Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulatory network balances stem cell maintenance, differentiation

12.01.2010
While much of the promise of stem cells springs from their ability to develop into any cell type in the body, the biological workings that control that maturation process are still largely unknown.

Writing in the online edition of the Proceedings of the National Academy of Sciences this week (Jan. 11), scientists from the University of Wisconsin-Madison and the University of California-Irvine present a new model of stem cell regulation.

Working with the small roundworm Caenorhabditis elegans, the researchers describe how a network of regulatory factors can maintain a stable pool of stem cells while launching a second pool of cells on the path toward maturing into differentiated cells with specific functions.

"This gives us a different way to think about how stem cells are controlled to leave their stem cell state and enter into a differentiated state," says Judith Kimble, a Howard Hughes Medical Institute investigator and UW-Madison professor of biochemistry who led the study.

"I think the basic principle is one that is very broadly applicable. The regulatory network is geared to define two states — the stem cell state and the differentiated state — and it's the regulation of that network that's important," Kimble says. "My guess is that this will also be true in other stem cell systems."

Regulation of the transition from stem cell to mature cell is important for a number of reasons, she says. Disruption of the balance between the two states could lead to tumors or loss of the ability to maintain healthy tissues.

Using the relatively simple worm allows them to study how stem cell populations respond to various physiological parameters in a whole animal and should help guide efforts to harness their blank-slate properties and to understand human diseases.

"Looking in vivo at how a stem cell is controlled to go from one state to another is really important if you want to intervene or engineer. This provides us a new way of thinking about it," Kimble says.

The new model also describes how a previously identified intermediate population of cells, possessing some properties of each state, probably reflects a gradual maturation process.

The specific factors that trigger cells to leave the stem cell state and begin to differentiate are still unknown, the scientists say, but the network of known regulatory factors already well understood in the worm provides several possibilities.

"Many of the same molecules control stem cells and development in humans and are involved in aberrant conditions," like leukemia and other cancers, Kimble says. "We hope to establish a procedure for understanding them in more complex systems."

In addition to Kimble, the paper was authored by Sarah Crittenden, Olivier Cinquin, and Dyan Morgan. Additional funding was provided by the National Institutes of Health.

Judith Kimble | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>