Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regulatory network balances stem cell maintenance, differentiation

While much of the promise of stem cells springs from their ability to develop into any cell type in the body, the biological workings that control that maturation process are still largely unknown.

Writing in the online edition of the Proceedings of the National Academy of Sciences this week (Jan. 11), scientists from the University of Wisconsin-Madison and the University of California-Irvine present a new model of stem cell regulation.

Working with the small roundworm Caenorhabditis elegans, the researchers describe how a network of regulatory factors can maintain a stable pool of stem cells while launching a second pool of cells on the path toward maturing into differentiated cells with specific functions.

"This gives us a different way to think about how stem cells are controlled to leave their stem cell state and enter into a differentiated state," says Judith Kimble, a Howard Hughes Medical Institute investigator and UW-Madison professor of biochemistry who led the study.

"I think the basic principle is one that is very broadly applicable. The regulatory network is geared to define two states — the stem cell state and the differentiated state — and it's the regulation of that network that's important," Kimble says. "My guess is that this will also be true in other stem cell systems."

Regulation of the transition from stem cell to mature cell is important for a number of reasons, she says. Disruption of the balance between the two states could lead to tumors or loss of the ability to maintain healthy tissues.

Using the relatively simple worm allows them to study how stem cell populations respond to various physiological parameters in a whole animal and should help guide efforts to harness their blank-slate properties and to understand human diseases.

"Looking in vivo at how a stem cell is controlled to go from one state to another is really important if you want to intervene or engineer. This provides us a new way of thinking about it," Kimble says.

The new model also describes how a previously identified intermediate population of cells, possessing some properties of each state, probably reflects a gradual maturation process.

The specific factors that trigger cells to leave the stem cell state and begin to differentiate are still unknown, the scientists say, but the network of known regulatory factors already well understood in the worm provides several possibilities.

"Many of the same molecules control stem cells and development in humans and are involved in aberrant conditions," like leukemia and other cancers, Kimble says. "We hope to establish a procedure for understanding them in more complex systems."

In addition to Kimble, the paper was authored by Sarah Crittenden, Olivier Cinquin, and Dyan Morgan. Additional funding was provided by the National Institutes of Health.

Judith Kimble | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>