Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulation of telomerase in stem cells and cancer cells

28.06.2012
New insights from stem cell research can be applied to human tumours

Scientists at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have gained important insights for stem cell research which are also applicable to human tumours and could lead to the development of new treatments.

As Rolf Kemler’s research group discovered, a molecular link exists between the telomerase that determines the length of the telomeres and a signalling pathway known as the Wnt/â-signalling pathway.

Telomeres are the end caps of chromosomes that play a very important role in the stability of the genome. Telomeres in stem cells are long and become shorter during differentiation or with age, but lengthen again in tumour cells.

The Wnt/â-catenin signalling pathway controls numerous processes in embryonic development, such as the formation of the body axis and of organ primordia, and is particularly active in embryonic and adult stem cells. The â-catenin protein plays a key role in this signalling pathway. The incorrect regulation or mutation of â-catenin leads to the development of tumours.

Rolf Kemler’s research group has now shown that â-catenin regulates the telomerase gene directly, and has explained the molecular mechanism at work here. Embryonic stem cells with mutated â-catenin generate more telomerase and have extended telomeres, while cells without â-catenin have low levels of telomerase and have shortened telomeres.

This regulation mechanism can also be found in human cancer cells. These discoveries could lead to the development of a new approach to the treatment of human tumours.

Contact
Prof. Dr. Rolf Kemler
Max Planck Institute of Immunobiology and Epigenetics
Phone: +49 76 1510-8471
Fax: +49 76 1510-8474
Email: kemler@­ie-freiburg.mpg.de
Original publication
Katrin Hoffmeyer, Angelo Raggioli, Stefan Rudloff, Roman Anton, Andreas Hierholzer, Ignacio Del Valle, Kerstin Hein, Riana Vogt, Rolf Kemler
Wnt/â-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells
Science 22 June 2012: Vol. 336 no. 6088 pp. 1549-1554 DOI: 10.1126/science.1218370

Prof. Dr. Rolf Kemler | Max-Planck-Institute
Further information:
http://www.mpg.de/5876241/stem_cells_telomerase

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>