Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulation of semiochemicals in inflammation

02.06.2016

Tumour necrosis factor-alpha (TNF-α) is a central signalling substance of the immune system and involved in many inflammatory processes. Blocking this molecule is the foundation of modern treatment against inflammatory diseases such as rheumatism, psoriasis or chronic inflammatory bowel diseases. The molecular mechanism on which the release and therefore activation of TNF-α is based was first clarified by a working group from the Cluster of Excellence "Inflammation at Interfaces" at the Faculty of Medicine at Kiel University.

The team, led by cell biologist Professor Karina Reiß, therefore achieved a pioneering success. This is because the principle discovered is of fundamental significance and opens up a completely new area of research in cell biology. Apart from this, the study which was recently published in Nature Communications identifies new starting points for the development of anti-inflammatory treatments.


Extracellular signals lead to the negatively charged phospholipid phosphatidylserine (PS) coming to the outside from the inside of the membrane. At this moment the protease ADAM17 can interact with PS electrostatically and is placed in a position where substrates (e.g. TNF-α) are released. Inflammatory reactions in our body are influenced decisively by the release of TNF α.


Prof. Dr. Karina Reiß (at the back) and Dr. Anselm Sommer, from the Cluster of Excellence "Inflammation at Interfaces" and the Department of Dermatology, Venerology and Allergology at the UKSH Kiel, are researching enzymes (proteases) and their inhibitors, which are of significance in inflammatory diseases. Photo: Kerstin Nees

Since the central role of tumour necrosis factor-alpha (TNF-α) has become known in the inflammatory process, working groups throughout the world have been trying to understand how this important molecule is regulated in the body. A milestone in this connection was a discovery made in 1997. At that time the enzyme was discovered which releases TNF-α.

The enzyme, called ADAM17, sits on the cell surface and "cuts off" TNF-α there from the primary stage embedded in the membrane, so that it can unfold its effect on other cells. In addition to TNF-α, ADAM17 also splits a large number of other molecules located in the membrane and therefore conveys them in a soluble form.

"The protease cuts off substrates directly via the cell membrane. Then these proteins that have now been released can bind themselves to receptors on other cells. This is how the protease ADAM17 regulates an unbelievable amount in our bodies", explains Karina Reiß, who has been carrying out research as a professor for epithelial protease inhibitors in the Cluster of Excellence "Inflammation at Interfaces" and the Department of Dermatology, Venerology and Allergology at Kiel University's Faculty of Medicine and the University Medical Center Schleswig-Holstein (UKSH) since 2008. A large number of substrates have already been identified that ADAM17 splits. These play a role in such things as cell proliferation, i.e. the growth of tissue, and in immune reactions.

Since the discovery of ADAM17 as a TNF-α releasing enzyme, it is hoped that the further characterisation of this protease will lead to progress in the treatment of people with chronic inflammatory bowel diseases (Crohn's disease, colitis ulcerosa), skin diseases (psoriasis) or inflammatory joints (rheumatoid arthritis). The fundamental questions are: when does this enzyme start to cut off something from the cell surface, and how exactly does this work?

Research has now been carried out on the substances through which the protease is activated, in other words, when it starts to cut something off. "But no one has yet understood how this works at the molecular level. We have made an important contribution to this. For the first time we can describe the mechanism of how ADAM17 is activated and therefore make a major contribution to understanding the regulation of this important enzyme", explains Reiß.

A component of the cell membrane, the lipid molecule phosphatidylserine, abbreviated to PS, plays a key role in the process. The cell membrane, which mainly consists of phospholipids, is constructed asymmetrically. Certain lipids can only be found on the inside and some others only outside of the dual layer of the membrane. The negatively charged lipid molecule PS sits on the inside of the membrane. There, positively charged proteins can dock on via electrostatic attraction, which regulates their function.

"We have observed that negatively charged phosphatidylserine comes to the outside for a short time under certain conditions, so basically flips over. This creates a negative charge outside. ADAM17 has positive charges, which interact with this negative charge. This is the decisive mechanism to activate the protease so that it cuts something off ", explains Dr. Anselm Sommer, post doc in the working group and lead author of the study.

It is known that the function of intracellular proteins is regulated via electrostatic attraction of PS, but this does not apply to proteins on the outside of the cell. Reiß continues: "This is basically a new fundamental principle in cell biology, which we have discovered." It is therefore entirely possible that not only the protease ADAM17, but also the function of other proteins is influenced by this outward turning of PS.

The researchers have provided evidence of the mechanism in cell culture studies with substances which are known to activate ADAM17. "We placed many known activators of ADAM17 on the cells and were able to use a PS-binding dye under the microscope to observe that the PS moves from the inside to the outside." The area of the ADAM17 molecule was also identified, which interacts with the negative charges of PS. Studies in a mouse model are planned for the next stage, which are intended to provide evidence of the newly discovered principle in a living organism, too. This study was made possible and sponsored by funding from the Cluster of Excellence "Inflammation at Interfaces", the CRC 877 "Proteolysis as a regulatory event in pathophysiology " and the Research Training Group RTG 1743 - Genes, Environment, Inflammation .

Original publication:
Sommer, A. et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7:11523 doi: 10.1038/ncomms11523 (2016), published 10. 2016.

http://inflammation-at-interfaces.de/de/newsroom/karinareissundanselmsommer.jpg
Prof. Dr. Karina Reiß (at the back) and Dr. Anselm Sommer, from the Cluster of Excellence "Inflammation at Interfaces" and the Department of Dermatology, Venerology and Allergology at the UKSH Kiel, are researching enzymes (proteases) and their inhibitors, which are of significance in inflammatory diseases. Photo: Kerstin Nees

http://inflammation-at-interfaces.de/de/newsroom/A17SchemaV2.jpg
Extracellular signals lead to the negatively charged phospholipid phosphatidylserine (PS) coming to the outside from the inside of the membrane. At this moment the protease ADAM17 can interact with PS electrostatically and is placed in a position where substrates (e.g. TNF-α) are released. Inflammatory reactions in our body are influenced decisively by the release of TNF α.

Contact:
Prof. Dr. Karina Reiß
The Department of Dermatology, Venerology and Allergology
Tel.: +49 (0)431/597-4786
kreiss@dermatology.uni-kiel.de

Dr. Anselm Sommer
The Department of Dermatology, Venerology and Allergology
Tel.: +49 (0)431/597-1062
asommer@dermatology.uni-kiel.de

Cluster of Excellence "Inflammation at Interfaces"
Scientific Office, Head : Dr. habil. Susanne Holstein
Press and Communications, Sonja Petermann, Text: Kerstin Nees
Postal address: Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Tel.: +49 (0)431 880-4850, Fax: +49 (0)431 880-4894
E-mail: spetermann@uv.uni-kiel.de
Website: www.inflammation-at-interfaces.de

The Cluster of Excellence "Inflammation at Interfaces" has been funded since 2007 by the Excellence Initiative of the German Government and the federal states with a total budget of 68 million Euros. It is currently in its second phase of funding. Around 300 cluster members are spread across the four locations: Kiel (Kiel University, University Medical Center Schleswig-Holstein (UKSH)), Lübeck (University of Lübeck, UKSH), Plön (Max Planck Institute for Evolutionary Biology) and Borstel (Research Center Borstel (FZB) – Center for Medicine and Biosciences ) and are researching an innovative, systematic approach to the phenomenon of inflammation, which can affect all barrier organs such as the intestines, lungs and skin.

Weitere Informationen:

http://inflammation-at-interfaces.de/en/newsroom/current-issues/regulation-of-se...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>