Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulation of cell proliferation is dependent on nucleocytoplasmic trafficking

24.08.2010
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the Opioid Growth Factor (OGF, [Met5]-enkephalin) and its receptor, OGFr, a clinically important system with potent antitumor properties, has controlled entry from the cytoplasm to the nucleus.

The nucleocytoplasmic passage of OGF-OGFr is critical to cell proliferation and suggests that there are hierarchical levels of nuclear import. This discovery, reported in the September 2010 issue of Experimental Biology and Medicine, provides new insights into understanding the pathobiology of diseases related to this native biological system, and contributes to the development of new agents that will enhance treatment effectiveness.

Previous immunohistochemical and immunoelectron microscope studies have detected OGF and OGFr in both the cytoplasm and the nucleus. The OGF-OGFr axis is known to regulate cell proliferation by modulating cyclin dependent kinase inhibitors, resulting in a retardation of cells at the G1-S interface of the cell cycle. Experiments utilizing a human cancer cell line, a squamous cell carcinoma of the head and neck, and a probe of OGFr fused to green fluorescent protein (eGFP), revealed the presence of a transport factor, karyopherin â, which plays a key role in nucleocytoplasmic transport. Moreover, directionality of transport for karyopherin â is dependent on the small guanosine triphophatase (GTPase) Ran. Knockdown of karyopherin â or Ran with siRNAs, but not the adaptor molecule karyopherin á, prevented transport of OGFr-eGFP and resulted in a marked increase in DNA synthesis. These results document that the pathway for regulating the cell cycle by the OGF-OGFr axis involves the timely and faithful translocation of this peptide-receptor complex across the nuclear envelope. This nucleocytoplasmic trafficking is critical for cell proliferation.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with a postdoctoral fellow Dr. Fan Cheng, in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin discovered the cell proliferative properties of endogenous opioids, identified OGF as the specific opioid peptide involved, and cloned and sequenced OGFr. Along with Dr. Cheng, they have documented that OGF enters cells by clathrin-mediated endocytosis, showed that the OGF-OGFr complex undergoes nucleocytoplasmic trafficking which is dependent on nuclear localization signals, and collaborated on demonstrating the remarkable properties of these native peptides in a variety of clinical studies. OGF has proven successful in Phase I and Phase II clinical trials for pancreatic cancer, and safety and efficacy studies for squamous cell carcinoma of the head and neck, and hepatocellular carcinoma are in progress. Co-author Dr. McLaughlin states "Given the extraordinary multifaceted and subtle biological control of the cell cycle by the OGF-OGFr axis, it may be envisioned that either a loss or a gain in nucleocytoplasmic transport could contribute to the onset and progression of disease. Localization of these proteins in the wrong cellular compartments could result in pathological states. " Dr. Zagon adds that "The clinical implications of the study speak to whether changes in factors related to the nucleocytoplasmic pathway of the OGF-OGFr axis, part of the body's own machinery governing physiological processes, can be mobilized in treatment of human disorders. Enhancement of these elements could prove extremely effective in reducing abnormal responses associated with cell proliferation as in inflammation, autoimmune diseases, and cancer."

Dr. Steve Goodman, Editor-in-Chief of Experimental Biology and Medicine stated "Ian Zagon and his colleagues are responsible for the describing the myriad of functions of the Opioid Growth Factor (OGF) and its receptor (OGFr) in health and disease. In this very interesting article, they have demonstrated the molecular mechanisms underlying nuclear import of OGF-OGFr. Specifically, they have demonstrated a role for karyopherin â and Ran in this process. The nuclear transport of OGF-OGFr is critical for the regulation of cell proliferation."

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>