Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regenerated cells may restore vision after corneal dysfunction

14.06.2012
New method reported in the American Journal of Pathology

Regenerative medicine, or the use of specially grown tissues and cells to treat injuries and diseases, has been successful in treating disorders of a number of organs, including heart, pancreas, and cartilage. However, efforts to treat disorders of the corneal endothelium, a single cell layer on the inner surface of the cornea, with regenerative techniques have been less effective.

Now, a group of scientists has developed a method that enhances the adhesion of injected corneal endothelial cells (CECs), allowing for successful corneal transplantation to repair pathological dysfunctions. Their results are published online today in advance, in the July issue of The American Journal of Pathology.

"Corneal endothelial dysfunction is a major cause of severe visual impairment, since the cells maintain the transparency of the cornea," explains lead investigator Noriko Koizumi, MD, PhD, of the Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan. "Injected cultured CECs can be washed off by aqueous humor flow, resulting in poor adhesion of the cells injected onto the corneal tissue. Previous studies demonstrated that Rho-associated kinase (ROCK) signaling interferes with adhesion. We found that transplanting cultivated CECs in combination with a low-molecular weight compound that inhibits ROCK (ROCK inhibitor Y-27632), successfully achieved the recovery of corneal transparency."

Using rabbit cells, researchers cultivated CECs in the lab and injected them into the anterior chamber of rabbit eyes with damaged corneal endothelia. Based on the recovery of the corneal endothelial function, they found that when the cultivated cells were injected along with Y-27632, the rabbit corneas regained complete transparency 48 hours after injection. In contrast, rabbit CECs injected without Y-27632 resulted in hazy and severely swollen corneas. No complications related to cell injection therapy were observed and reconstructed corneal endothelium with Y-27632 exhibited normal hexagonal cell shape.

Since rabbit CECs are highly prolific in vivo, the scientists performed another round of experiments with monkey CECs, which are more similar to those in humans. The transplantation of CECs in these primates also achieved the recovery of long-term corneal transparency with a monolayer of hexagonal cells, suggesting that cell adhesion modified by ROCK inhibitor may be an effective treatment for human corneal endothelial disorders.

Although surgical techniques to replace the injured corneal endothelium have been developed, these procedures are technically difficult and challenging due to a shortage of donor corneas. "The novel strategy of using a cell-based therapy combined with a ROCK inhibitor may ultimately provide clinicians with a new therapeutic modality in regenerative medicine, not only for treatment of corneal endothelial dysfunctions, but also for a variety of pathological diseases," Dr. Koizumi concludes.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>