Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red pandas reveal an unexpected (artificial) sweet tooth

17.04.2009
Preference for artificial sweeteners previously thought to exist only in Old World primates

Researchers from the Monell Center report that the red panda is the first non-primate mammal to display a liking for the artificial sweetener aspartame. This unexpected affinity for an artificial sweetener may reflect structural variation in the red panda's sweet taste receptor.

The findings may shed light on how taste preferences and diet choice are shaped by molecular differences in taste receptors.

"The red panda's unique taste receptor gives us a tool to broaden our understanding of how we detect sweet taste," said the paper's senior author, Joseph G. Brand, PhD, a biophysicist at Monell. "Greater insight into why we like artificial sweeteners could eventually lead to the development of more acceptable sugar substitutes, potentially benefiting diabetics and other individuals on sugar-restricted diets."

Many species like sweet-tasting foods, but there are some exceptions. In an earlier study, Brand and Monell comparative geneticist Xia Li, PhD, reported that cats – both domestic and wild – can not taste sweets due to a defect in one of the genes that codes for the sweet taste receptor.

The current research extended those findings by relating sweet preferences to genetic analyses of sweet receptor structure in six related species. Like the cat, each of the species tested -- red panda, ferret, genet, meerkat, mongoose, and lion -- belongs to the Order Carnivora.

The species, although closely related, vary widely with regard to the types of foods they eat. For example, lions, like other cats, are obligate carnivores, meaning that they eat almost exclusively meat. Meerkrats are mainly insectivores, while red pandas are primarily herbivores that almost exclusively eat bamboo leaves and shoots.

By studying the structure and function of the sweet receptor gene across species and how this relates to differences in taste preferences and diet selection, the researchers seek to provide a framework to increase understanding of individual differences in human taste function, food choice and nutritional health.

"The taste world of every species, and even every individual, is unique, defined in part by the structure of their taste receptors," said Li. "We need to know more about these differences and how they influence our diet."

In the study, published online in the Journal of Heredity, preferences for six natural sugars and six artificial sweeteners were tested in a zoo setting. For each sweet molecule, the animal was given access to both the sweet solution and water for 24 hours. The animal was said to prefer the sweet solution when it drank much more sweet fluid than water.

DNA samples from each species were used to examine the structure of the sweet receptor gene Tas1r2, which codes for the T1R2 sweet taste receptor. T1R2 is one of two taste receptors that join together to recognize sweetness.

The sweet taste receptors contain binding sites for a variety of natural sugars and artificial sweeteners. However, species vary regarding which sites they possess, due to subtle differences in receptor structure.

As expected from the previous findings, the lion did not prefer any of the sweet solutions. This could be explained by its defective Tas1r2 gene, which prevents the lion from expressing a functional sweet taste receptor. With no sweet receptor, the lion is unable to detect – or prefer – sweet-tasting compounds.

Each of the remaining species preferred at least some of the natural sugars. Consistent with having a functional sweet receptor, Tas1r2 genes from these species did not show the defect found in lion and other cats.

Because only primates were believed to be able to taste aspartame, the researchers predicted that none of the Carnivore species tested would show a preference for the artificial sweeteners.

This indeed was the case for five of the species. However, the sixth species – the red panda – drank large amounts of the artificial sweeteners aspartame, neotame, and sucralose.

Seeking to explain this unexpected behavior, the researchers compared Tas1r2 genes from various species that can and cannot taste aspartame. They were surprised to find no consistent differences between aspartame tasters and nontasters.

However, the genetic analysis did reveal that the red panda's sweet receptor has a unique structure that is different from any of the other species examined.

"This may explain why the red panda is able to taste artificial sweeteners," said Li, who is the paper's lead author. "What we don't know is why this particular animal has this unusual ability. Perhaps the red panda's unique sweet receptor evolved to allow this animal to detect some compound in its natural food that has a similar structure to these sweeteners."

The findings suggest that the receptor mechanisms for sweet taste are more complex than previously suspected. "This is the essence of molecular science," remarked Brand, "Asking a behavioral question and getting a molecular answer."

Future studies will explore how protein structure of taste receptor genes predicts stimulus binding and ultimately provide insight into how variations in taste receptor genes affect taste perception, food choice and nutritional status.

Taste tests for the red panda and other animals in the study were conducted at two zoos in Switzerland by Dieter Glaser, PhD, from the University of Zurich. Also contributing to the study were Monell scientists Gary Beauchamp and Weihua Li, along with Warren Johnson and Stephen O'Brien from the National Cancer Institute.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>