Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red Light Regulates Nectar Secretion

27.09.2010
Nectar production in Lima beans depends on light quality

Flowering plants produce nectar to attract insect pollinators. Some plant species, such as Lima bean, also secrete nectar from so-called extrafloral nectaries to attract ants which in turn fend off herbivores. Scientists of the Max Planck Institute in Jena, Germany, have discovered that the production of extrafloral nectar is light dependent.

They have shown that the plants are able not only to distinguish between day and night, but also to adapt their nectar secretion to current light conditions by using a special photoreceptor, the phytochrome. Phytochrome probably influences the regulation of a special enzyme that binds the plant hormone jasmonic acid (JA) to the amino acid isoleucine (Ile). The emerging JA-Ile molecule affects the secretion of extrafloral nectar in such a way that the plant’s defense against herbivores is most effective whenever herbivory is most likely – or, more precisely, during the day. (PNAS Early Edition, DOI: 10.1073/pnas.1009007107)

Plants have to continuously defend themselves against herbivores to survive and reproduce. They do this directly by producing toxic substances, such as nicotine, or indirectly, by calling their enemies’ enemies for help. An example of an indirect defense is the release of volatile substances that attract predatory insects or parasitoids and guide them to their prey; for example, predatory wasps or bugs are led to a caterpillar that is feeding on a plant.

Another indirect defense is the secretion of extrafloral nectar from special leaf organs. In this way Lima beans attract ants that not only enjoy the sweet nectar but also defend the plant against herbivores. Scientists in the Department of Bioorganic Chemistry study this “sweet” defense mechanism. Radhika Venkatesan, a PhD student from India, completed a series of experiments on this topic and tested whether nectar secretion in Lima beans is light dependent. “After all, nectar consists mainly of sugars, and sugars are primary products in the process of photosynthesis – which depends on light,” notes the scientist. In the course of her studies, which were published in the Early Edition of the “Proceedings of the National Academy of Sciences USA” last week, she came across an old acquaintance in plant research – the so-called phytochrome. Plants contain phytochromes as photoreceptors in their leaves, which is the reason why phytochromes are sometimes called “the eye of the plant.”

“Not the light intensity, but light quality or composition plays a decisive role in regulating nectar production in Lima bean,” says Wilhelm Boland, director of the Max Planck Institute. As he explains, the phytochrome in the plant absorbs red light that enables the plant to distinguish the diurnal and seasonal variation of sunlight quality. Radhika Venkatesan’s experiments are the first to demonstrate that plants also use the phytochrome system to set up their lines of defense effectively and economically.

The hormone jasmonic acid is known as an important signal that plants produce after wounding by herbivores. It also plays a central role in regulating nectar secretion. The scientists have discovered that phytochrome-mediated light regulation has a significant impact on the signaling effect of jasmonic acid: Free jasmonic acid inhibits nectar secretion in the dark but stimulates its production in the light. Radhika Venkatesan found the key to this light-regulated behavior in a reaction that binds jasmonic acid to the amino acid isoleucine. The emerging conjugate JA-Ile is a signal molecule already known from other studies. For the first time, it has been identified as the actual elicitor of nectar secretion. Additional experiments have confirmed that nectar production doesn’t increase if binding of JA and isoleucine is prohibited by an inhibitor. If plants are wounded in the dark to stimulate JA production, JA-Ile is produced only in those leaves that were previously exposed to red light. [JWK, AO]

Original Publication:
Venkatesan Radhika, Christian Kost, Axel Mithöfer, Wilhelm Boland (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences USA, Early Edition, 20. September 2010, DOI: 10.1073/pnas.1009007107
Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany. Tel.: +49 (0)3641- 57 1200; boland@ice.mpg.de
Picture Requests:
Angela Overmeyer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

Further reports about: DOI Ecology LIGHT Max Planck Institute amino acid floral nectar nectar toxic substance

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>