Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red hair is a sign of oxidative stress in wild boars, but gray is a-ok

20.07.2012
A coat of a certain color could be costly for wild boars, according to research published in the journal Physiological and Biochemical Zoology.

The research, led by Ismael Galván of Spain's Museo Nacional de Ciencias Naturales, found that boars with more reddish hair tend to have higher levels of oxidative stress—damage that occurs as toxins from cell respiration build up. The reason for this, the researchers suggest, is that the process of producing reddish pigment eats up a valuable antioxidant that would otherwise be fighting the free radicals that lead to oxidative stress.

Most of the pigment in animal skin and hair is produced by chemicals called melanins. There are two kinds of melanins: eumelanin, which produces dark colors, and pheomelanin, which produces reddish or chestnut colors. The two melanins are produced via similar chemical pathways, with an exception. The production of pheomelanin consumes a chemical called glutathione (also known as GSH), which is a powerful intracellular antioxidant.

To see if this consumption of GSH has physiological consequences, Galván and his team studied a population of wild boars in Doñana National Park in southwestern Spain. The researchers quantified the amount of reddish fur each boar had, and tested levels of GSH and oxidative stress in the muscles of each animal.

They found that the boars with the highest levels of pheomelanin in their hair tended to have lower levels of GSH in their muscles, and had the highest levels of oxidative stress. "This suggests that certain colorations may have important consequences for wild boars," Galván said. "Pheomelanin responsible for chestnut colorations may make animals more susceptible to oxidative damage."

The results corroborate findings in other studies on birds and other animals suggesting the production of pheomelanin imposes physiological constraints. In humans, red hair and high pheomelanin in skin has been linked to higher rates of cancer. These findings raise a question: Why did pheomelanin evolve in the first place?

Galván suggests one possible answer. While consuming GSH, pheomelanin production also consumes a chemical called cysteine, which is part of GSH and can be toxic in excess. "Pheomelanin may have evolved because cysteine, which is toxic at very high levels, is removed from cells during pheomelanin production," Galván said.

Surprising Results for Grays

While the findings for red hair echoed results of other studies, there were some surprising results for gray hair in wild boars. Studies in humans have suggested that graying hair—the absence of melanin—may happen as a result of oxidative stress. "As with human hair, wild boars show hair graying all across their body fur," Galván said. "But we found that boars showing hair graying were actually those in prime condition and with the lowest levels of oxidative damage. Far from being a sign of age-related decline, hair graying seems to indicate good condition in wild boars."

Research into the consequences of different levels of melanin is only just beginning, Galván says, and he hopes this research will spur continued study.

"Given that all higher vertebrates, including humans, share the same types of melanins in skin, hair, and plumage, these results increase our scant current knowledge on the physiological consequences of pigmentation," he said.

Ismael Galván, Carlos Alonso-Alvarez, and Juan J. Negro, "Relationships between Hair Melanization, Glutathione Levels, and Senescence in Wild Boars." Physiological and Biochemical Zoology 85:4 (July/August 2012).

Physiological and Biochemical Zoology

primarily publishes original research papers in animal physiology and biochemistry with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary or comparative physiology is particularly encouraged.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>