Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red hair is a sign of oxidative stress in wild boars, but gray is a-ok

20.07.2012
A coat of a certain color could be costly for wild boars, according to research published in the journal Physiological and Biochemical Zoology.

The research, led by Ismael Galván of Spain's Museo Nacional de Ciencias Naturales, found that boars with more reddish hair tend to have higher levels of oxidative stress—damage that occurs as toxins from cell respiration build up. The reason for this, the researchers suggest, is that the process of producing reddish pigment eats up a valuable antioxidant that would otherwise be fighting the free radicals that lead to oxidative stress.

Most of the pigment in animal skin and hair is produced by chemicals called melanins. There are two kinds of melanins: eumelanin, which produces dark colors, and pheomelanin, which produces reddish or chestnut colors. The two melanins are produced via similar chemical pathways, with an exception. The production of pheomelanin consumes a chemical called glutathione (also known as GSH), which is a powerful intracellular antioxidant.

To see if this consumption of GSH has physiological consequences, Galván and his team studied a population of wild boars in Doñana National Park in southwestern Spain. The researchers quantified the amount of reddish fur each boar had, and tested levels of GSH and oxidative stress in the muscles of each animal.

They found that the boars with the highest levels of pheomelanin in their hair tended to have lower levels of GSH in their muscles, and had the highest levels of oxidative stress. "This suggests that certain colorations may have important consequences for wild boars," Galván said. "Pheomelanin responsible for chestnut colorations may make animals more susceptible to oxidative damage."

The results corroborate findings in other studies on birds and other animals suggesting the production of pheomelanin imposes physiological constraints. In humans, red hair and high pheomelanin in skin has been linked to higher rates of cancer. These findings raise a question: Why did pheomelanin evolve in the first place?

Galván suggests one possible answer. While consuming GSH, pheomelanin production also consumes a chemical called cysteine, which is part of GSH and can be toxic in excess. "Pheomelanin may have evolved because cysteine, which is toxic at very high levels, is removed from cells during pheomelanin production," Galván said.

Surprising Results for Grays

While the findings for red hair echoed results of other studies, there were some surprising results for gray hair in wild boars. Studies in humans have suggested that graying hair—the absence of melanin—may happen as a result of oxidative stress. "As with human hair, wild boars show hair graying all across their body fur," Galván said. "But we found that boars showing hair graying were actually those in prime condition and with the lowest levels of oxidative damage. Far from being a sign of age-related decline, hair graying seems to indicate good condition in wild boars."

Research into the consequences of different levels of melanin is only just beginning, Galván says, and he hopes this research will spur continued study.

"Given that all higher vertebrates, including humans, share the same types of melanins in skin, hair, and plumage, these results increase our scant current knowledge on the physiological consequences of pigmentation," he said.

Ismael Galván, Carlos Alonso-Alvarez, and Juan J. Negro, "Relationships between Hair Melanization, Glutathione Levels, and Senescence in Wild Boars." Physiological and Biochemical Zoology 85:4 (July/August 2012).

Physiological and Biochemical Zoology

primarily publishes original research papers in animal physiology and biochemistry with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary or comparative physiology is particularly encouraged.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>