Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red hair is a sign of oxidative stress in wild boars, but gray is a-ok

20.07.2012
A coat of a certain color could be costly for wild boars, according to research published in the journal Physiological and Biochemical Zoology.

The research, led by Ismael Galván of Spain's Museo Nacional de Ciencias Naturales, found that boars with more reddish hair tend to have higher levels of oxidative stress—damage that occurs as toxins from cell respiration build up. The reason for this, the researchers suggest, is that the process of producing reddish pigment eats up a valuable antioxidant that would otherwise be fighting the free radicals that lead to oxidative stress.

Most of the pigment in animal skin and hair is produced by chemicals called melanins. There are two kinds of melanins: eumelanin, which produces dark colors, and pheomelanin, which produces reddish or chestnut colors. The two melanins are produced via similar chemical pathways, with an exception. The production of pheomelanin consumes a chemical called glutathione (also known as GSH), which is a powerful intracellular antioxidant.

To see if this consumption of GSH has physiological consequences, Galván and his team studied a population of wild boars in Doñana National Park in southwestern Spain. The researchers quantified the amount of reddish fur each boar had, and tested levels of GSH and oxidative stress in the muscles of each animal.

They found that the boars with the highest levels of pheomelanin in their hair tended to have lower levels of GSH in their muscles, and had the highest levels of oxidative stress. "This suggests that certain colorations may have important consequences for wild boars," Galván said. "Pheomelanin responsible for chestnut colorations may make animals more susceptible to oxidative damage."

The results corroborate findings in other studies on birds and other animals suggesting the production of pheomelanin imposes physiological constraints. In humans, red hair and high pheomelanin in skin has been linked to higher rates of cancer. These findings raise a question: Why did pheomelanin evolve in the first place?

Galván suggests one possible answer. While consuming GSH, pheomelanin production also consumes a chemical called cysteine, which is part of GSH and can be toxic in excess. "Pheomelanin may have evolved because cysteine, which is toxic at very high levels, is removed from cells during pheomelanin production," Galván said.

Surprising Results for Grays

While the findings for red hair echoed results of other studies, there were some surprising results for gray hair in wild boars. Studies in humans have suggested that graying hair—the absence of melanin—may happen as a result of oxidative stress. "As with human hair, wild boars show hair graying all across their body fur," Galván said. "But we found that boars showing hair graying were actually those in prime condition and with the lowest levels of oxidative damage. Far from being a sign of age-related decline, hair graying seems to indicate good condition in wild boars."

Research into the consequences of different levels of melanin is only just beginning, Galván says, and he hopes this research will spur continued study.

"Given that all higher vertebrates, including humans, share the same types of melanins in skin, hair, and plumage, these results increase our scant current knowledge on the physiological consequences of pigmentation," he said.

Ismael Galván, Carlos Alonso-Alvarez, and Juan J. Negro, "Relationships between Hair Melanization, Glutathione Levels, and Senescence in Wild Boars." Physiological and Biochemical Zoology 85:4 (July/August 2012).

Physiological and Biochemical Zoology

primarily publishes original research papers in animal physiology and biochemistry with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary or comparative physiology is particularly encouraged.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>