Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red hair is a sign of oxidative stress in wild boars, but gray is a-ok

20.07.2012
A coat of a certain color could be costly for wild boars, according to research published in the journal Physiological and Biochemical Zoology.

The research, led by Ismael Galván of Spain's Museo Nacional de Ciencias Naturales, found that boars with more reddish hair tend to have higher levels of oxidative stress—damage that occurs as toxins from cell respiration build up. The reason for this, the researchers suggest, is that the process of producing reddish pigment eats up a valuable antioxidant that would otherwise be fighting the free radicals that lead to oxidative stress.

Most of the pigment in animal skin and hair is produced by chemicals called melanins. There are two kinds of melanins: eumelanin, which produces dark colors, and pheomelanin, which produces reddish or chestnut colors. The two melanins are produced via similar chemical pathways, with an exception. The production of pheomelanin consumes a chemical called glutathione (also known as GSH), which is a powerful intracellular antioxidant.

To see if this consumption of GSH has physiological consequences, Galván and his team studied a population of wild boars in Doñana National Park in southwestern Spain. The researchers quantified the amount of reddish fur each boar had, and tested levels of GSH and oxidative stress in the muscles of each animal.

They found that the boars with the highest levels of pheomelanin in their hair tended to have lower levels of GSH in their muscles, and had the highest levels of oxidative stress. "This suggests that certain colorations may have important consequences for wild boars," Galván said. "Pheomelanin responsible for chestnut colorations may make animals more susceptible to oxidative damage."

The results corroborate findings in other studies on birds and other animals suggesting the production of pheomelanin imposes physiological constraints. In humans, red hair and high pheomelanin in skin has been linked to higher rates of cancer. These findings raise a question: Why did pheomelanin evolve in the first place?

Galván suggests one possible answer. While consuming GSH, pheomelanin production also consumes a chemical called cysteine, which is part of GSH and can be toxic in excess. "Pheomelanin may have evolved because cysteine, which is toxic at very high levels, is removed from cells during pheomelanin production," Galván said.

Surprising Results for Grays

While the findings for red hair echoed results of other studies, there were some surprising results for gray hair in wild boars. Studies in humans have suggested that graying hair—the absence of melanin—may happen as a result of oxidative stress. "As with human hair, wild boars show hair graying all across their body fur," Galván said. "But we found that boars showing hair graying were actually those in prime condition and with the lowest levels of oxidative damage. Far from being a sign of age-related decline, hair graying seems to indicate good condition in wild boars."

Research into the consequences of different levels of melanin is only just beginning, Galván says, and he hopes this research will spur continued study.

"Given that all higher vertebrates, including humans, share the same types of melanins in skin, hair, and plumage, these results increase our scant current knowledge on the physiological consequences of pigmentation," he said.

Ismael Galván, Carlos Alonso-Alvarez, and Juan J. Negro, "Relationships between Hair Melanization, Glutathione Levels, and Senescence in Wild Boars." Physiological and Biochemical Zoology 85:4 (July/August 2012).

Physiological and Biochemical Zoology

primarily publishes original research papers in animal physiology and biochemistry with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary or comparative physiology is particularly encouraged.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>