Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycler protein helps prevent disease

01.05.2009
Researchers identify protein recycling mechanism that helps protect from genetic disorders

Recycling is important not only on a global scale, but also at the cellular level, since key molecules tend to be available in limited numbers. This means a cell needs to have efficient recycling mechanisms.

Researchers at the European Molecular Biology Laboratory (EMBL) and Heidelberg University, Germany, have now uncovered the first step in the recycling of a crucial molecular tag which ensures the instructions encoded in our genes are correctly carried out. The study, published this week in the journal Cell, sheds new light on a proof-reading process that helps protect us from genetic diseases.

The translation of information from gene to protein in our cells is very important, but also error-prone. As errors can lead to diseases, several control mechanisms check for mistakes along the way. One such mechanism, called nonsense-mediated decay (NMD), is based on a molecular tag that is attached to messenger RNAs, an intermediate step in the translation from DNA to protein. The tag, called exon-junction complex (EJC), tells the NMD machinery if an RNA is faulty, potentially dangerous and should be degraded. Overall, a cell would need to mark around 400,000 sites with EJCs, but it only has 10,000 copies of one of the marker's components. This means EJCs must be broken down as soon as possible, so that their components can be re-used.

Researchers in the groups of Matthias Hentze, associate director of EMBL, and Andreas Kulozik at the University Clinic Heidelberg discovered that a protein called PYM is responsible for the disassembly and recycling of EJCs.

“Our results were very surprising,” says Niels Gehring, who carried out the research. “Everybody had assumed that ribosomes, the large structures that carry out protein assembly, simply iron out the EJCs as they pass. Now we see that this is not quite right, because without PYM EJC disassembly is impaired.”

Although PYM can be found on its own in the cell, it tends to associate with ribosomes. This explains why - and how - EJCs are removed when the ribosome goes by, and could also ensure that they are not removed too early. If that happened, NMD would be compromised, as the proofreading machinery would have no markers to guide it. This in turn could have wider consequences, as NMD influences how diseases such as thalassaemia, Duchenne's muscular dystrophy and cystic fibrosis manifest themselves.

“The new insights fill an important gap in the basic understanding of a vital cellular process,” says Hentze. “But they also have medical implications. Ultimately we would like to find ways to modulate NMD pharmacologically to influence the development and course of genetic diseases.”

The research was conducted in the joint Molecular Medicine Partnership Unit (MMPU), a collaboration between EMBL and Heidelberg University. “The MMPU bridges the gap between basic and clinical research. The constant cross-fertilisation between biologists and medical scientists guides our studies and often leads to discoveries that are applicable to medicine,” says Kulozik, medical director and professor of pediatrics at Heidelberg University.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2009/01may09/index.html

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>