Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recreating natural complex gene regulation

04.02.2013
By reproducing in the laboratory the complex interactions that cause human genes to turn on inside cells, Duke University bioengineers have created a system they believe can benefit gene therapy research and the burgeoning field of synthetic biology.

This new approach should help basic scientists as they tease out the effects of "turning on" or "turning off" many different genes, as well as clinicians seeking to develop new gene-based therapies for human disease.


This is an image of TALE.
Credit: Charles Gersbach

"We know that human genes are not just turned on or off, but can be activated to any level over a wide range. Current engineered systems use one protein to control the levels of gene activation," said Charles Gersbach, assistant professor of biomedical engineering at Duke's Pratt School of Engineering and member of Duke's Institute for Genome Sciences and Policy. "However, we know that natural human genes are regulated by interactions between dozens of proteins that lead to diverse outcomes within a living system.

"In contrast to typical genetics studies that dissect natural gene networks in a top-down fashion, we developed a bottom-up approach, which allows us to artificially simulate these natural complex interactions between many proteins that regulate a single gene," Gersbach said. "Additionally, this approach allowed us to turn on genes inside cells to levels that were not previously possible."

The results of the Duke experiments, which were conducted by Pablo Perez-Pinera, a senior research scientist in Gersbach's laboratory, were published on-line in the journal Nature Methods. The research was supported by the National Institutes of Health, the National Science Foundation, The Hartwell Foundation, and the March of Dimes.

Human cells have about 20,000 genes which produce a multitude of proteins, many of which affect the actions of other genes. Being able to understand these interactions would greatly improve the ability of scientists in all areas of biomedical research. However because of the complexity of this natural system, synthetic biologists create simple gene networks to have precise control over each component. These scientists can use these networks for applications in biosensing, biocomputation, or regenerative medicine, or can use them as models to study the more complex natural systems.

"This new system can be a powerful new approach for probing the fundamental mechanisms of natural gene regulation that are currently poorly understood," Perez-Pinera said. "In this way, we can further the capacity of synthetic biology and biological programming in mammalian systems."

The latest discoveries were made possible by using a new technology for building synthetic proteins known as transcription activator-like effectors (TALEs), which are artificial enzymes that can be engineered to "bind" to almost any gene sequences. Since these TALEs can be easily produced, the researchers were able to make many of them to control specific genes.

"All biological systems depend on gene regulation," Gersbach said. "The challenge facing bioengineering researchers is trying to synthetically recreate processes that occur in nature."

Other members of the team were Duke's David Ousterout, Jonathan Brunger, Alicia Farin, Katherine Glass, Farshid Guilak, Gregory Crawford, and Alexander Hartemink.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>