Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recovering 'bodyguard' cells in pancreas may restore insulin production in diabetics

09.10.2012
T regulatory cells in the pancreatic lymph nodes play important role in diabetes onset and recovery of the insulin production in diabetic patients, say Thomas Jefferson University researchers

The key to restoring production of insulin in type I diabetic patients, previously known as juvenile diabetes, may be in recovering the population of protective cells known T regulatory cells in the lymph nodes at the "gates" of the pancreas, a new preclinical study published online October 8 in Cellular & Molecular Immunology by researchers in the Department of Bioscience Technologies at Thomas Jefferson University suggests.

Tatiana D. Zorina, M.D., Ph.D., an Assistant Professor in the Department of Bioscience Technologies, Jefferson School of Health Professions, and colleagues addressed a question of whether type I diabetic patients' own beta cells, which produce insulin, could recover/regenerate if protected from autoimmune cells. If successful, such an approach would promote the patient's own insulin production without need for its supplementation by insulin injections or beta cell transplantation from the cadaver organ donors.

Type 1 diabetes is usually diagnosed in children and young adults. As many as 3 million Americans have type 1 diabetes, and each year, more than 15,000 children and 15,000 adults are diagnosed in the United States. Type 1 diabetes is a disease that occurs as a result of destruction of beta cells producing insulin by autoimmune cells. The resulting lack of insulin, which is needed to metabolize/process the sugar, leads to increased levels of sugar in the blood and all clinical symptoms of type 1 diabetes. The only currently available therapies for type 1 diabetes patients are based on insulin provision (by different means).

In healthy people, the autoimmune cells are also present, but insulin-producing beta cells (residing in the pancreas) are normally protected from their attack by the T regulatory cells, or Treg cells. Treg cells confront and disable the autoimmune cells in the pancreatic lymph nodes (which play a role of the gates of the pancreas) and thus protect beta cells in the pancreas from being destroyed.

It was shown in this study conducted by Dr. Zorina's group that in the mouse model of type 1 diabetes the Treg cells that normally play a role of the beta cells' "bodyguards" fail to accumulate in the pancreatic lymph nodes, and hence to protect beta cells from being destroyed by the autoimmune cells. The researchers found a therapeutic regiment that normalized the observed deficiency of the Treg cells in the pancreatic lymph nodes in diabetic mice.

As a result of this treatment, the animals were cured from diabetes: their beta cells re-grew (being protected from the autoimmune cells by the Treg cells) and they had normal blood sugar levels for the rest of their lives.

However, the therapy that was utilized to treat these mice was based on bone marrow transplantation, and this treatment cannot be used for diabetic people because of its serious complications. The objective of the next step of this study was to explore the mechanisms that were responsible for results observed in the mouse model for their future adaptation into a clinically safe therapeutic protocol.

The article by Dr. Zorina and colleagues, entitled "Treg Cells in Pancreatic Lymph Nodes: the Possible Role in Diabetogenesis and ƒÒ Cell Regeneration in T1D Model" reports data suggesting a new approach for normalization of Treg cells' protective function in type 1 diabetes. The function of the CXCR4/SDF-1 chemokine axis that is responsible for the Treg cells' trafficking and homing was shown in this study to be significantly decreased in pancreatic lymph nodes in type 1 diabetes. This means that the Treg cells' decreased accumulation and compromised protective effect in the pancreatic lymph nodes could be improved by rectification of the function of this axis.

"Our study represents a new and very specific approach to confront the local autoimmune reactions in type 1 diabetes," said Dr. Zorina. "What we've shown here is that normalizing the Treg cell population in the pancreatic lymph nodes of diabetic mice is associated with the regeneration of their own insulin-producing beta cells and the resulting normalization of their blood sugar levels."

"The ultimate goal of our research is to establish an immunomodulatory protocol that would increase accumulation of the Treg cells in the vicinity of the insulin-producing beta cells in humans by rectification of function of molecules responsible for their homing in this area. This approach to confront insulin deficiency in type 1 diabetes by allowing the patients' own beta cells to recover through the control of Treg cell accumulation in the pancreatic lymph nodes might become a new therapy for type 1 diabetes," said Dr. Zorina."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>