Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reconstructing folding funnels from experimental data to uncover proteins' inner life


Proteins are the molecules of life. They are chemically programmed by their amino acid sequence to fold into highly organized conformations that underpin all of biological structure (e.g., hair, scales) and function (e.g., enzymes, antibodies). Understanding the sequence-structure-function relationship--the "protein folding problem"--is one of the great, unsolved problems in physical chemistry, and is of inestimable scientific value in exposing the inner workings of life and the rational design of molecular machines.

"This work lays the foundations to recover the protein folding landscapes directly from experimental data, providing a route to new understanding and rational design of proteins," explained Andrew Ferguson, an assistant professor of materials science and engineering at the University of Illinois at Urbana-Champaign.

The molecular folding funnel contains all of the stable molecular states and folding pathways between them, providing important information about structure and mechanisms that can reveal how a polymer or protein folds, or aid in the design of drug molecule or ligands with a particular shape.

Credit: Andrew Ferguson, University of Illinois

"While we remain far from this goal, our understanding of protein folding was revolutionized by the 'new view' that envisages molecular folding as a conformational search over a funneled free energy surface."

According to Ferguson, the single-molecule free energy surface encodes all of the thermodynamics and pathways of folding, dictating protein structure and dynamics. Each point on the landscape corresponds to an ensemble of similar protein conformations, and the height of the landscape prescribes their stability. It is a key goal of physical chemistry to determine molecular folding landscapes.

"Molecular folding landscapes can be inferred from long computer simulations in which the positions of all atoms in the molecule are known," said Jiang Wang, a graduate research assistant and first author of the paper, "Nonlinear reconstruction of single-molecule free energy surfaces from univariate time series," published in Physical Review E.

"Experimental techniques such as single molecule Förster resonance energy transfer (FRET) can measure distances between covalently-grafted fluorescent dye molecules to track the size of the molecule as a function of time, but it has so far not been possible to reconstruct folding funnels from experimental measurements of single coarse-grained observables," Ferguson explained.

"In this work, we have integrated nonlinear machine learning and statistical thermodynamics with Takens' Theorem from dynamical systems theory to demonstrate in computer simulations of a hydrophobic polymer chain that it is possible to determine molecular folding landscapes from time series of a single experimentally-accessible observable."

"The information loss associated with its reconstruction from a single observable means that the topography of the reconstructed funnel may be perturbed - the heights and depths of the free energy peaks and valleys may be altered - but it faithfully preserves the topology of the true funnel - the locality, continuity, and connectivity of molecular configurations," Wang noted.

"This means that the folding funnel determined from a measurements of, in this case, the head-to-tail distance of the chain is geometrically and topologically identical and contains precisely the same molecular states and transition pathways as that computed from knowledge of all the atomic positions," Ferguson added.

"We are very excited by this idealized proof of principle for computer simulations of a polymer chain, and are currently working to extend our analyses to simulations of biologically realistic peptides and proteins, and partner with single molecule biophysicists to apply our technique to experimental measurements of real proteins," Ferguson said.

Media Contact

Andrew Ferguson


Andrew Ferguson | EurekAlert!

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>