Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First reconstitution of an epidermis from human embryonic stem cells

23.11.2009
Stem cell research is making great strides. This is yet again illustrated by a study carried out by the I-STEM* Institute (I-STEM/ Inserm UEVE U861/AFM), published in the Lancet on 21 November 2009. The I-STEM team, directed by Marc Peschanski has just succeeded in recreating a whole epidermis from human embryonic stem cells.

The goal is to one day be able to propose this unlimited resource of cells as an alternative treatment in particular for victims of third degree burns and patients with genetic diseases affecting the skin. These studies were financed in particular by Telethon donations.

Cell therapy has radically changed the life of serious burn victims. For more than two decades, physicians have used cell culture techniques in order to obtain a sufficiently large area of skin to reconstruct the destroyed epidermis from a small sample harvested from the patients themselves.

Although this type of graft has been used with success, one of its limits is the time required (three weeks) to produce a sufficient amount of epidermis to cover the affected areas, leaving the patient unprotected during this interval. For a few years, research has led to the development of skin substitutes that help protect patients during the period before grafting. However, these technological means do not rule out the risk of immune rejection and transmission of disease.

Rapid access to an unlimited number of cells capable of yielding a well-formed epidermis, perfectly controlled in the laboratory before use, would therefore be the ideal solution to the problems posed by existing techniques. For these reasons the I-STEM researchers attempted to reconstruct a whole epidermis using human embryonic stem cells.

A protocol in several stages

Human embryonic stem cells (hES) have two fundamental characteristics: a capacity for unlimited proliferation and pluripotency i.e. the capacity to differentiate into all the cell types in the human body.

The first objective of the team was to obtain skin stem cells (keratinocytes) similar to those naturally present in the human epidermis from hES cells. Keratinocytes, permit the constant renewal of the skin.

Once this stage was achieved, the second objective of the researchers consisted in finalising strategies to isolate keratinocyte stem cells in order to test their capacity to reconstitute a functional epidermis firstly in vitro - then in vivo. "It is these cells that interest us as they are the only cells capable of recreating all the layers of the human epidermis" pointed out Christine Baldeschi.

The transformation of hES cells into epidermal cells was made possible by a combination of cell biology and pharmacological approaches . A "cell niche" was first created around the ES cells to guide them towards an epidermal destiny and an appropriate pharmacological agent was then added to the culture medium. The researchers decided to maintain this treatment for the 40 days that is normally required for an embryo to form its epidermis. By applying this concept of respecting chronobiology, the hES cells engaged in this differentiation process acquired first the markers of a simple epithelium and then finally those of keratinocytes. A population of cells presenting all the characteristic marker of adult keratinocytes was isolated and then amplified. It is without doubt by maintaining this treatment for 40 days that the I-STEM team succeeded where many others had failed.

Thanks to the complementarity of the research teams working at I-STEM and the sharing of means, the researchers succeeded in rebuilding in vitro a functional epidermis in which keratinocyte stem cells have all the qualities required for satisfactory function (self-renewal, stratification and final differentiation properties). It remained to be shown if these results obtained in vitro could be confirmed in vivo. The final stage therefore consisted in reproducing this protocol in the mouse. For these experiments, I-STEM collaborated with a Spanish research team specialised in the use of such grafts in animals with a weakened immune system to overcome potential graft rejection. Twelve weeks after transplantation, the mice presented localized areas of completely normal and functional adult human epidermis containing all the skin cell types. "Our team is currently the only one to have succeeded in finalising a protocol making it possible to transform human embryonic stem cells into a pure and homogeneous population of keratinocytes able to reconstitute a whole epidermis both in vitro and in vivo." concluded Marc Peschanski, director of I-STEM.

For the researchers, there are numerous future applications of this work. These "ready-to-use" cells will be proposed to produce epidermal cells for the treatment of third degree burn victims and also other skin diseases such as genodermatoses or ulcerations which complicate diabetes in a very large number of patients. "For more than 25 years we have known how to make epidermis with skin stem cells and skin grafts are made in particular for victims of third degree burns. The keratinocytes obtained from human embryonic stem cells therefore have an immediate clinical application. We are now therefore seeking how, in concrete terms, to pass to man." added finally Christine Baldeschi, leader of the team performing this study.

Research on human embryonic stem cells is at the centre of the debate on the bioethics laws. Since the bioethics law of 2004, this research is authorized by special dispensation in exceptional cases after submitting protocols to the Biomedecine Agency for an opinion. The I-STEM team is one of the 28 French teams to have received an authorisation to conduct research on these cells.

For more information

Source
"Human embryonic stem cells derivatives enable full reconstruction of the pluristratified epidermis."
Hind Guenou 1, Xavier Nissan1, Fernando Larcher2, Jessica Feteira1, Gilles Lemaitre1, Manoubia Saidani1, Marcela Del Rio2 , Christine C Barrault3, François-Xavier Bernard3, Marc Peschanski1, Christine Baldeschi1* & Gilles Waksman1†
1 Inserm/UEVE U-861, I-STEM, AFM, Institute for Stem cell Therapy and Exploration of Monogenic diseases, 5 rue Henri Desbruères, 91030 Evry cedex, France
2 CIEMAT –CIBER-ER, Epithelial Biomedicine Division, Avenida Complutense, 22 E- 28040, Madrid, Spain.
3 BIOalternatives SAS, 1 bis rue des Plantes, 86160 Gencay, France
The Lancet, volume 374, number 9703, 21 November 2009
Scientists' contact details:
Marc Peschanski
Inserm Research Director
Directeur of I-STEM
Email: mpeschanski@istem.fr
Phone: 01 69 90 85 17
Christine Baldeschi
Head of the Genodermatosis team
ISTEM/ Inserm UEVE U861
Email : cbaldeschi@istem.fr
Tel : 01 69 90 85 33
Press contact:
Priscille Rivière/Axelle de Franssu - presse@inserm.fr - Tel : 01 44 23 60 97
Stéphanie Bardon/Marie Rocher – presse@afm.genethon.fr - Tél : 01 69 47 28 28
Maryvonne de La Taille - communication@univ-evry.fr - Tél : 01 69 47 70 64

Priscille Riviere | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>