Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recognizing pathogenic invaders

24.10.2011
Elucidation of the structure of receptors that detect invading pathogens in moths could aid the diagnosis of infectious fungal diseases

Researchers in Japan have determined the structural basis of the molecular defense system that protects insects from pathogens, which provides clarity on the molecular binding that underpins this defense system.

Insects express pattern recognition receptors (PRRs) that provide an innate ability to detect fungi and plant pathogens. One of the PRRs, â-glucan recognition protein (âGRP), recognizes and binds to carbohydrate molecules called â-glucans that are synthesized by pathogens. Since little is known about how these molecules bind to each other, or about how the binding specificity is achieved, Yoshiki Yamaguchi of the RIKEN Advanced Science Institute and his colleagues used genetic engineering to produce the â-glucan-binding regions of âGRPs from two moth species, Bombix mori and Plodia interpunctella. They determined the structure of the receptors, both on their own and when bound to a â-glucan called laminarihexaose, using x-ray crystallography.

Analysis of the crystal structures revealed that the moth receptors recognize a complex of three laminarihexaoses bound to each other, and that their conformation barely changes when they are bound to laminarihexaoses. The analysis also revealed that the proteins from both species bind to laminarihexaoses in an identical way, via a characteristic structural motif, suggesting that the entire âGRP family shares a common binding mechanism.

Yamaguchi and colleagues also revealed that the laminarihexaose molecules attach to each other with hydrogen bonds that form an ordered and highly stable helical structure. Six precisely arranged monosaccharide (sugar) residues, spread across three chains, interact with the receptor binding site simultaneously, and are essential for the interaction.

To verify their findings, the researchers introduced point mutations at specific locations in the binding region of the Plodia interpunctella receptor. Four of the mutations abolished binding of â-glucan altogether, and four others weakened the binding interaction.

Typically, interactions between carbohydrates and proteins are relatively weak because they involve just two or three monosaccharide residues. The finding that the interaction between the receptors and â-glucan involves six residues explains why this interaction is so strong; it also explains the high specificity of the receptors.

Mammals do not produce â-glucans, but they circulate in the bloodstream of patients with diseases such as invasive aspergillosis, a rapidly progressive and often fatal fungal infection.

“Our findings will be used for the development of diagnosis and monitoring tools with high specificity toward a variety of â-glucans,” says Yamaguchi. “Detecting â-glucans in patients may be helpful for identifying infectious fungi, which could in turn be useful to tailor-make treatments for patients.”

The corresponding author for this highlight is based at the Structural Glycolobiology Team, RIKEN Advanced Science Institute

Reference:
Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N. & Yamaguchi, Y. Structural insights into recognition of triple-helical â-glucan by insect fungal receptor. Journal of Biological Chemistry 286, 29158–29165 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>