Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recognizing pathogenic invaders

24.10.2011
Elucidation of the structure of receptors that detect invading pathogens in moths could aid the diagnosis of infectious fungal diseases

Researchers in Japan have determined the structural basis of the molecular defense system that protects insects from pathogens, which provides clarity on the molecular binding that underpins this defense system.

Insects express pattern recognition receptors (PRRs) that provide an innate ability to detect fungi and plant pathogens. One of the PRRs, â-glucan recognition protein (âGRP), recognizes and binds to carbohydrate molecules called â-glucans that are synthesized by pathogens. Since little is known about how these molecules bind to each other, or about how the binding specificity is achieved, Yoshiki Yamaguchi of the RIKEN Advanced Science Institute and his colleagues used genetic engineering to produce the â-glucan-binding regions of âGRPs from two moth species, Bombix mori and Plodia interpunctella. They determined the structure of the receptors, both on their own and when bound to a â-glucan called laminarihexaose, using x-ray crystallography.

Analysis of the crystal structures revealed that the moth receptors recognize a complex of three laminarihexaoses bound to each other, and that their conformation barely changes when they are bound to laminarihexaoses. The analysis also revealed that the proteins from both species bind to laminarihexaoses in an identical way, via a characteristic structural motif, suggesting that the entire âGRP family shares a common binding mechanism.

Yamaguchi and colleagues also revealed that the laminarihexaose molecules attach to each other with hydrogen bonds that form an ordered and highly stable helical structure. Six precisely arranged monosaccharide (sugar) residues, spread across three chains, interact with the receptor binding site simultaneously, and are essential for the interaction.

To verify their findings, the researchers introduced point mutations at specific locations in the binding region of the Plodia interpunctella receptor. Four of the mutations abolished binding of â-glucan altogether, and four others weakened the binding interaction.

Typically, interactions between carbohydrates and proteins are relatively weak because they involve just two or three monosaccharide residues. The finding that the interaction between the receptors and â-glucan involves six residues explains why this interaction is so strong; it also explains the high specificity of the receptors.

Mammals do not produce â-glucans, but they circulate in the bloodstream of patients with diseases such as invasive aspergillosis, a rapidly progressive and often fatal fungal infection.

“Our findings will be used for the development of diagnosis and monitoring tools with high specificity toward a variety of â-glucans,” says Yamaguchi. “Detecting â-glucans in patients may be helpful for identifying infectious fungi, which could in turn be useful to tailor-make treatments for patients.”

The corresponding author for this highlight is based at the Structural Glycolobiology Team, RIKEN Advanced Science Institute

Reference:
Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N. & Yamaguchi, Y. Structural insights into recognition of triple-helical â-glucan by insect fungal receptor. Journal of Biological Chemistry 286, 29158–29165 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>