Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for Cell Reprogramming Adds Protein

08.08.2008
Embryonic-like stem cells can be efficiently generated using a natural signaling molecule instead of the virally delivered cancer-causing gene c-Myc. The results represent progress in overcoming hurdles to the potential use of reprogrammed cells for stem-cell-based therapies in humans.

A drug-like molecule called Wnt can be substituted for the cancer gene c-Myc, one of four genes added to adult cells to reprogram them to an embryonic-stem-cell-like state, according to Whitehead researchers. Researchers hope that such embryonic stem-cell-like cells, known as induced pluripotent (IPS) cells, eventually may treat diseases such as Parkinson’s disease and diabetes.

Demonstrated in mice, the elimination of c-Myc represents an important step in creating IPS cells in a manner that in the future may be applied to human therapeutics.

“This is a good sign for the possible replacement of the other three genes used to reprogram cells,” says Ruth Foreman, a MD/PhD student in the lab of Whitehead Member Rudolf Jaenisch and a lead co-author on the paper, published online in Cell Stem Cell on August 6. The other lead co-authors are Alex Marson, an MD/PhD student in the labs of Jaenisch and Whitehead Member Richard Young, and Brett Chevalier, a research scientist in the Young lab.

... more about:
»DNA »IPS »Parkinson’s »Protein »Retrovirus »c-Myc »oncogene

“IPS cells hold great potential for future medicine, but we must learn how to generate these cells in a manner that is safe for clinical therapies,” says Young, who is also a professor of biology at Massachusetts Institute of Technology. “This advance in reprogramming is one key step toward that goal,”

Currently, IPS cells can be created by reprogramming adult cells through the use of viruses to transfer four genes (Oct4, Sox2, c-Myc and Klf4) into the cells’ DNA. The activated genes then override the adult state and convert the cells to embryonic-like IPS cells.

However, this method poses significant risks for potential use in humans.

First, the viruses employed in the process, called retroviruses, are associated with cancer because they insert DNA anywhere in a cell’s genome, thereby potentially triggering the expression of cancer-causing genes, or oncogenes. Second, c-Myc is a known oncogene whose overexpression can also cause cancer. For IPS cells to be employed to treat human diseases such as Parkinson’s, researchers must find safe alternatives to reprogramming with retroviruses and oncogenes.

Earlier research has shown that c-Myc is not strictly required for the generation of IPS cells. However, its absence makes the reprogramming process time-consuming and highly inefficient.

To bypass these obstacles, the Whitehead researchers replaced c-Myc and its retrovirus with a naturally occurring signaling molecule called Wnt3a. When added to the fluid surrounding the cells being reprogrammed, Wnt3a promotes the conversion of adult cells into IPS cells.

“We’re not sure if the Wnt molecule is doing the same thing as c-Myc or complementing c-Myc’s activity,” says Chevalier. “But it does increase stem cell growth similar to c-Myc.”

“This is a good start toward using external cues instead of genetic manipulation to reprogram cells,” says Marson. “But we still need to eliminate the need for retroviruses for the three other genes.”

Although the technique is promising in mouse cells, its potential applications in humans have not been studied, emphasizes Jaenisch, who is also a professor of biology at MIT. “Is the same pathway acting in the human system and can Wnt molecules be used to reprogram human cells?” he asks. “We don’t know, but I think those are very important questions to investigate.”

This research was supported by the National Institutes of Health.

Rudolf Jaenisch and Richard Young’s primary affiliations are with Whitehead Institute for Biomedical Research, where their laboratories are located and all their research is conducted. Jaenisch and Young are also professors of biology at Massachusetts Institute of Technology.

Full citation:
Cell Stem Cell August 7, 2008 (online August 6, 2008).
Wnt stimulation substitutes for c-Myc in reprogramming somatic cells to induced pluripotent stem cells

Alexander Marson (1,2), Ruth Foreman (1,2), Brett Chevalier (1), Michael Kahn (3,4), Richard A. Young (1,2), Rudolf Jaenisch (1,2).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
2. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.
3. Institute for Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California 90033, USA.

4. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033, USA.

Cristin Carr | Newswise Science News
Further information:
http://www.wi.mit.edu/news/

Further reports about: DNA IPS Parkinson’s Protein Retrovirus c-Myc oncogene

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>