Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recipe for Cell Reprogramming Adds Protein

08.08.2008
Embryonic-like stem cells can be efficiently generated using a natural signaling molecule instead of the virally delivered cancer-causing gene c-Myc. The results represent progress in overcoming hurdles to the potential use of reprogrammed cells for stem-cell-based therapies in humans.

A drug-like molecule called Wnt can be substituted for the cancer gene c-Myc, one of four genes added to adult cells to reprogram them to an embryonic-stem-cell-like state, according to Whitehead researchers. Researchers hope that such embryonic stem-cell-like cells, known as induced pluripotent (IPS) cells, eventually may treat diseases such as Parkinson’s disease and diabetes.

Demonstrated in mice, the elimination of c-Myc represents an important step in creating IPS cells in a manner that in the future may be applied to human therapeutics.

“This is a good sign for the possible replacement of the other three genes used to reprogram cells,” says Ruth Foreman, a MD/PhD student in the lab of Whitehead Member Rudolf Jaenisch and a lead co-author on the paper, published online in Cell Stem Cell on August 6. The other lead co-authors are Alex Marson, an MD/PhD student in the labs of Jaenisch and Whitehead Member Richard Young, and Brett Chevalier, a research scientist in the Young lab.

... more about:
»DNA »IPS »Parkinson’s »Protein »Retrovirus »c-Myc »oncogene

“IPS cells hold great potential for future medicine, but we must learn how to generate these cells in a manner that is safe for clinical therapies,” says Young, who is also a professor of biology at Massachusetts Institute of Technology. “This advance in reprogramming is one key step toward that goal,”

Currently, IPS cells can be created by reprogramming adult cells through the use of viruses to transfer four genes (Oct4, Sox2, c-Myc and Klf4) into the cells’ DNA. The activated genes then override the adult state and convert the cells to embryonic-like IPS cells.

However, this method poses significant risks for potential use in humans.

First, the viruses employed in the process, called retroviruses, are associated with cancer because they insert DNA anywhere in a cell’s genome, thereby potentially triggering the expression of cancer-causing genes, or oncogenes. Second, c-Myc is a known oncogene whose overexpression can also cause cancer. For IPS cells to be employed to treat human diseases such as Parkinson’s, researchers must find safe alternatives to reprogramming with retroviruses and oncogenes.

Earlier research has shown that c-Myc is not strictly required for the generation of IPS cells. However, its absence makes the reprogramming process time-consuming and highly inefficient.

To bypass these obstacles, the Whitehead researchers replaced c-Myc and its retrovirus with a naturally occurring signaling molecule called Wnt3a. When added to the fluid surrounding the cells being reprogrammed, Wnt3a promotes the conversion of adult cells into IPS cells.

“We’re not sure if the Wnt molecule is doing the same thing as c-Myc or complementing c-Myc’s activity,” says Chevalier. “But it does increase stem cell growth similar to c-Myc.”

“This is a good start toward using external cues instead of genetic manipulation to reprogram cells,” says Marson. “But we still need to eliminate the need for retroviruses for the three other genes.”

Although the technique is promising in mouse cells, its potential applications in humans have not been studied, emphasizes Jaenisch, who is also a professor of biology at MIT. “Is the same pathway acting in the human system and can Wnt molecules be used to reprogram human cells?” he asks. “We don’t know, but I think those are very important questions to investigate.”

This research was supported by the National Institutes of Health.

Rudolf Jaenisch and Richard Young’s primary affiliations are with Whitehead Institute for Biomedical Research, where their laboratories are located and all their research is conducted. Jaenisch and Young are also professors of biology at Massachusetts Institute of Technology.

Full citation:
Cell Stem Cell August 7, 2008 (online August 6, 2008).
Wnt stimulation substitutes for c-Myc in reprogramming somatic cells to induced pluripotent stem cells

Alexander Marson (1,2), Ruth Foreman (1,2), Brett Chevalier (1), Michael Kahn (3,4), Richard A. Young (1,2), Rudolf Jaenisch (1,2).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
2. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.
3. Institute for Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California 90033, USA.

4. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033, USA.

Cristin Carr | Newswise Science News
Further information:
http://www.wi.mit.edu/news/

Further reports about: DNA IPS Parkinson’s Protein Retrovirus c-Myc oncogene

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>