Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Rechargeable’ Anti-Microbial Surfaces Boost Food Safety

21.02.2011
Using nano-scale materials, a University of Massachusetts Amherst food scientist is developing a way to improve food safety by adding a thin anti-microbial layer to food-handling surfaces. Only tens of nanometers thick, it chemically “re-charges” its germ-killing powers every time it’s rinsed with common household bleach.

Food scientist Julie Goddard recently received a four-year, $488,000 grant from the United States Department of Agriculture’s Agriculture and Food Research Initiative to lead the development of the new method for modifying polymer and stainless steel processing surfaces by adding a nano-scale layer of antimicrobial compound to gaskets, conveyor belts and work tables, for example.

As she explains, “This layer replenishes its anti-microbial qualities with each repeated bleach rinse. So at the end of the day in a meat-packing plant, for example, when employees clean their equipment, the regular bleach rinse will re-charge the surface’s anti-microbial activity. They will not need to add any more steps.” The chemical action comes from a halamine structure that holds chlorine in an applied layer only nanometers thick. The treatment does not affect the strength of tables or trays.

Food production is increasingly automated and as the number of surfaces contacted by food increases, there is greater potential for contamination. Goddard and colleagues’ new method will cost industry less than incorporating anti-microbials into an entire conveyor belt construction, for example. The technique is effective at the square-inch scale in the laboratory now, the food scientist adds, and a major goal will be to show that it can be effective at larger scales in commercial food processing.

Goddard, who did the preliminary work to show that this nanotech method is effective against organisms relevant to food safety and others relevant to food spoilage, such as E. coli and Listeria, says the technology is already being applied in hospital textiles whose anti-microbial properties are replenished each time they’re laundered in bleach.

“It’s not meant to replace thorough cleaning, which should always be in place, but it’s meant to add power to the process and a further layer of low-cost protection against contamination.” Goddard’s collaborators on this project include UMass Amherst food scientist Lynne McLandsborough and Joe Hotchkiss, director of the Michigan State University School of Packaging.

Julie Goddard | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>