Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many receptor models used in drug design may not be useful after all

06.10.2008
Architectural code of caffeine's main target in the body finally cracked

It may very well be that models used for the design of new drugs have to be regarded as impractical. This is the sobering though important conclusion of the work of two Leiden University scientists published in Science this week.

The editorial board of the renowned journal even decided to accelerate the publication on the crystal structure of the adenosine A2A receptor via Science Express. Together with an expert team at the Scripps Institute (La Jolla) led by crystallographer Ray Stevens, Ad IJzerman, head of the division of medicinal chemistry at the Leiden/Amsterdam Center for Drug Research, and postdoctoral fellow Rob Lane worked on the structure elucidation of this protein, which is one of caffeine's main targets in the human body, and a key player in Parkinson's disease.

Fatty

Obtaining a crystal structure of a receptor bound to a drug is by far the best way to learn and appreciate how drugs actually work. "For decades scientists from all over the world have struggled to get the crystal structure of this type of G protein-coupled receptor", IJzerman explains. "These arduous attempts are easily understood when one takes into account that the whole family of these proteins are the targets for almost half of the medicines that are available in the pharmacy shop. It seemed an impossible task, since these proteins are in the cell wall, which means they are in a fatty environment, and are fatty themselves. We all know that fat does not crystallize easily."

Fusion product

The scientists in California had found an elegant solution for this problem though. They coupled the receptor protein to another protein that, in contrast, crystallizes easily, and managed to obtain tiny crystals of the fusion product. That was sufficient to crack the architectural code of the protein, for which very advanced crystallization equipment was used. In fact, something similar had worked for yet another receptor, but this time it was an adenosine receptor's turn. These receptors are at the core of the research in the division of medicinal chemistry of the Leiden/Amsterdam Center for Drug Research, and that's exactly why the American colleagues turned to the Leiden group. Forces were joined, and that's how the receptor constructs were characterized biochemically and pharmacologically, while at the same time the crystallization trials were ongoing across the Atlantic.

Supercaffeine

By the end of June 2008 the first crystals of suitable quality had been obtained and analyzed. That led to a big surprise that will undoubtedly have tremendous implications for the pharmaceutical industry. "The binding site for drugs on this receptor is very different from the one that had been found on two other receptors that we currently know the crystal structure of", says Rob Lane, asked for comments. "In the adenosine A2A receptor a small molecule, prosaically called ZM241385, is co-crystallized. This compound has high affinity for the receptor, and therefore it is best described as some sort of 'supercaffeine', a type of molecule that we had worked on in Leiden before." With some degree of understatement, Lane continues: "The drug is in a very different position than was expected on the basis of the other crystal structures. And there's the rub; almost everybody in the world of drug design has so far used receptor models that may not be so useful at all. That is the sobering and at the same time important discovery we made."

This study was supported by the Dutch Top Institute Pharma

Hilje Papma | alfa
Further information:
http://www.leiden.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>