Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reason for body's response to borrelia discovered

07.10.2008
Inside a cell it is so crowded that a certain protein from borrelia winds up being crunched.

From having been like an oblong rugby football, it gets bent and then collapses into a lump. At this point a previously hidden part appears, known to trigger the formation of antibodies. This explains how Borrelia can be diagnosed, a process that was previously unknown.

Congestion in the cell environment forces the protein V1sE, which exists in borrelia bacteria, to change shape. Like a jack-in-the-box, an antigen- a substance alien to the body -then pops up, prompting the body to start producing antibodies. It is precisely the prevalence of these antibodies that physicians often use to diagnose borrelia.

Until today, we have had no knowledge of how these antibodies are produced, since the antigen is hidden in the original form of the V1sE protein.

"We suspect that the changes in the shape of the protein are nature's own origami to control what functions the protein should have in specific circumstances. In this way different parts can be exposed, roughly as in the jumping fleas made of folded paper that children play with," says Pernilla Wittung-Stafshede, who was recently named professor of biological chemistry at Umeå University in Sweden.

Together with colleagues from the U.S., she has published these findings in the U.S. journal Proceedings of the National Academy of Sciences.

How proteins fold and change their shape has been studied intensively for many years in vitro, but in these studies primarily diluted water solution has been used. Pernilla Wittung-Stafshede stresses that it makes a big difference to study a cell environment.

"A cell is not a 'sack of water.' It's a thick as a gelatin, and the total number of large molecules in a cell can correspond to up to 40 percent of its total volume. This means that proteins have less room to fold an function in," explains Pernilla Wittung-Stafshede.

The crowdedness of a cell thus entails that the form and function of proteins can be affected.

"This means in such cases that it if it was possible to modulate the congestion in the cell, it could constitute a precision tool for manipulating the shape of a protein. What other proteins might have different functions if we crunched them together? With such a tool, we might be able to turn specific activities and signals on or off in proteins. We speculate that this could be used in the future to affect the course of various diseases, for example," she explains.

The study is the first to show that crowdedness in the cell can entail shape changes in a large, biologically relevant protein. The studies were carried out with the aid of computer simulations and laboratory experiments.

For further information, please contact:
Pernilla Wittung-Stafshede, professor of biological chemistry, Umeå University
Phone: +46 (0)90-786 5347

Karin Wikman | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>