Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reason for body's response to borrelia discovered

07.10.2008
Inside a cell it is so crowded that a certain protein from borrelia winds up being crunched.

From having been like an oblong rugby football, it gets bent and then collapses into a lump. At this point a previously hidden part appears, known to trigger the formation of antibodies. This explains how Borrelia can be diagnosed, a process that was previously unknown.

Congestion in the cell environment forces the protein V1sE, which exists in borrelia bacteria, to change shape. Like a jack-in-the-box, an antigen- a substance alien to the body -then pops up, prompting the body to start producing antibodies. It is precisely the prevalence of these antibodies that physicians often use to diagnose borrelia.

Until today, we have had no knowledge of how these antibodies are produced, since the antigen is hidden in the original form of the V1sE protein.

"We suspect that the changes in the shape of the protein are nature's own origami to control what functions the protein should have in specific circumstances. In this way different parts can be exposed, roughly as in the jumping fleas made of folded paper that children play with," says Pernilla Wittung-Stafshede, who was recently named professor of biological chemistry at Umeå University in Sweden.

Together with colleagues from the U.S., she has published these findings in the U.S. journal Proceedings of the National Academy of Sciences.

How proteins fold and change their shape has been studied intensively for many years in vitro, but in these studies primarily diluted water solution has been used. Pernilla Wittung-Stafshede stresses that it makes a big difference to study a cell environment.

"A cell is not a 'sack of water.' It's a thick as a gelatin, and the total number of large molecules in a cell can correspond to up to 40 percent of its total volume. This means that proteins have less room to fold an function in," explains Pernilla Wittung-Stafshede.

The crowdedness of a cell thus entails that the form and function of proteins can be affected.

"This means in such cases that it if it was possible to modulate the congestion in the cell, it could constitute a precision tool for manipulating the shape of a protein. What other proteins might have different functions if we crunched them together? With such a tool, we might be able to turn specific activities and signals on or off in proteins. We speculate that this could be used in the future to affect the course of various diseases, for example," she explains.

The study is the first to show that crowdedness in the cell can entail shape changes in a large, biologically relevant protein. The studies were carried out with the aid of computer simulations and laboratory experiments.

For further information, please contact:
Pernilla Wittung-Stafshede, professor of biological chemistry, Umeå University
Phone: +46 (0)90-786 5347

Karin Wikman | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>