Another reason to avoid high-fat diet – it can disrupt our biological clock

The biological clock regulates the expression and/or activity of enzymes and hormones involved in metabolism, and disturbance of the clock can lead to such phenomena as hormone imbalance, obesity, psychological and sleep disorders and cancer.

While light is the strongest factor affecting the circadian clock, Dr. Oren Froy and his colleagues of the Institute of Biochemistry, Food Science and Nutrition at the Hebrew University’s Robert H. Smith Faculty of Agriculture, Food and Environment in Rehovot, have demonstrated in their experiments with laboratory mice that there is a cause-and-effect relation between diet and biological clock imbalance.

To examine this thesis, Froy and his colleagues, Ph.D. student Maayan Barnea and Zecharia Madar, the Karl Bach Professor of Agricultural Biochemistry, tested whether the clock controls the adiponectin signaling pathway in the liver and, if so, how fasting and a high-fat diet affect this control. Adiponectin is secreted from differentiated adipocytes (fat tissue) and is involved in glucose and lipid metabolism. It increases fatty acid oxidation and promotes insulin sensitivity, two highly important factors in maintaining proper metabolism.

The researchers fed mice either a low-fat or a high-fat diet, followed by a fasting day, then measured components of the adiponectin metabolic pathway at various levels of activity. In mice on the low-fat diet, the adiponectin signaling pathway components exhibited normal circadian rhythmicity. Fasting resulted in a phase advance. The high-fat diet resulted in a phase delay. Fasting raised and the high-fat diet reduced adenosine monophosphate-activated protein kinase (AMPK) levels. This protein is involved in fatty acid metabolism, which could be disrupted by the lower levels.

In an article soon to be published by the journal Endocrinology, the researchers suggest that this high-fat diet could contribute to obesity, not only through its high caloric content, but also by disrupting the phases and daily rhythm of clock genes. They contend also that high fat-induced changes in the clock and the adiponectin signaling pathway may help explain the disruption of other clock-controlled systems associated with metabolic disorders, such as blood pressure levels and the sleep/wake cycle.

Media Contact

Jerry Barach The Hebrew University

More Information:

http://www.huji.ac.il

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors