Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Reaper’ protein strikes at mitochondria to kill cells

21.10.2010
Our cells live ever on the verge of suicide, requiring the close attention of a team of molecules to prevent the cells from pulling the trigger.

This self-destructive tendency can be a very good thing, as when dangerous precancerous cells are permitted to kill themselves, but it can also go horribly wrong, destroying brain cells that store memories, for instance.

Rockefeller University scientists are parsing this perilous arrangement in ever finer detail in hopes that understanding the basic mechanisms of programmed cell death, or apoptosis, will enable them eventually to manipulate the process to kill the cells we want to kill and protect the ones we don’t.

In experiments published last month in the Journal of Cell Biology, researchers led by postdoctoral associate Cristinel Sandu in Hermann Steller’s Strang Laboratory of Apoptosis and Cancer Biology drilled down on a protein aptly named Reaper, which was first described in a 1994 paper by Steller in Science. Under the right conditions,

Reaper interferes with molecules called inhibitor of apoptosis proteins (IAPs), which prevent the cell from irrevocably initiating its autodestruct sequence. By inhibiting these inhibitors, Reaper essentially takes the brakes off the process of apoptosis, pronouncing a cell’s death sentence. Other molecules called caspases then carry that sentence out.

“Like the grim reaper, Reaper is an announcer of death, but not the executioner,” says Steller, who is also a Howard Hughes Medical Institute investigator. “It’s like the key that starts the engine.”

Reaper and the other Drosophila IAP antagonists Hid and Grim are known to trigger apoptosis in flies, and related proteins serve a similar function in humans and other mammals. But exactly how and where Reaper initiates apoptosis has not been well understood. Sandu and colleagues bred genetically modified strains of flies that expressed variations on the Reaper protein specifically in flies’ eyes. This allowed them to assess the contribution of individual protein motifs to Reaper’s apoptosis inducing powers, and what they found was that a particular helical domain was crucial for the formation of Reaper complexes, and could be modified to be even more powerful than the regular protein. The more deadly Reaper variants were obvious by the damage caused to the flies’ eyes.

In a series of biochemical experiments, the researchers also found that Reaper must travel to the mitochondria, the cell’s energy factories, to effectively deliver its death sentence, and that to get there, it must hitch a ride on the Hid protein, with which it interacts. By tagging Hid and Reaper fluorescently, Sandu could visualize Hid and Reaper acting in a complex and gathering at the membrane of the mitochondria. When Reaper was engineered to go directly to the mitochondrial membrane, it resulted in a molecule that is far superior at triggering cell death than regular Reaper. Further experiments suggested that in a complex with Hid, Reaper is protected from degradation as the cells began to die.

“So now we have Hid and Reaper working very closely together,” Sandu says. “And the localization to the mitochondria is crucial to the initiation of apoptosis.” Drugs that mimic a small part of the function of Reaper are already in clinical trials. The discovery of a way to make Reaper a much better killer, namely by targeting it directly to the mitochondria, provides new avenues to explore for improving cancer therapies. “Adding this element that takes Reaper directly to the mitochondria is not something people would have thought of before this,” Steller says.

Brett Norman | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>