Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Reaper’ protein strikes at mitochondria to kill cells

21.10.2010
Our cells live ever on the verge of suicide, requiring the close attention of a team of molecules to prevent the cells from pulling the trigger.

This self-destructive tendency can be a very good thing, as when dangerous precancerous cells are permitted to kill themselves, but it can also go horribly wrong, destroying brain cells that store memories, for instance.

Rockefeller University scientists are parsing this perilous arrangement in ever finer detail in hopes that understanding the basic mechanisms of programmed cell death, or apoptosis, will enable them eventually to manipulate the process to kill the cells we want to kill and protect the ones we don’t.

In experiments published last month in the Journal of Cell Biology, researchers led by postdoctoral associate Cristinel Sandu in Hermann Steller’s Strang Laboratory of Apoptosis and Cancer Biology drilled down on a protein aptly named Reaper, which was first described in a 1994 paper by Steller in Science. Under the right conditions,

Reaper interferes with molecules called inhibitor of apoptosis proteins (IAPs), which prevent the cell from irrevocably initiating its autodestruct sequence. By inhibiting these inhibitors, Reaper essentially takes the brakes off the process of apoptosis, pronouncing a cell’s death sentence. Other molecules called caspases then carry that sentence out.

“Like the grim reaper, Reaper is an announcer of death, but not the executioner,” says Steller, who is also a Howard Hughes Medical Institute investigator. “It’s like the key that starts the engine.”

Reaper and the other Drosophila IAP antagonists Hid and Grim are known to trigger apoptosis in flies, and related proteins serve a similar function in humans and other mammals. But exactly how and where Reaper initiates apoptosis has not been well understood. Sandu and colleagues bred genetically modified strains of flies that expressed variations on the Reaper protein specifically in flies’ eyes. This allowed them to assess the contribution of individual protein motifs to Reaper’s apoptosis inducing powers, and what they found was that a particular helical domain was crucial for the formation of Reaper complexes, and could be modified to be even more powerful than the regular protein. The more deadly Reaper variants were obvious by the damage caused to the flies’ eyes.

In a series of biochemical experiments, the researchers also found that Reaper must travel to the mitochondria, the cell’s energy factories, to effectively deliver its death sentence, and that to get there, it must hitch a ride on the Hid protein, with which it interacts. By tagging Hid and Reaper fluorescently, Sandu could visualize Hid and Reaper acting in a complex and gathering at the membrane of the mitochondria. When Reaper was engineered to go directly to the mitochondrial membrane, it resulted in a molecule that is far superior at triggering cell death than regular Reaper. Further experiments suggested that in a complex with Hid, Reaper is protected from degradation as the cells began to die.

“So now we have Hid and Reaper working very closely together,” Sandu says. “And the localization to the mitochondria is crucial to the initiation of apoptosis.” Drugs that mimic a small part of the function of Reaper are already in clinical trials. The discovery of a way to make Reaper a much better killer, namely by targeting it directly to the mitochondria, provides new avenues to explore for improving cancer therapies. “Adding this element that takes Reaper directly to the mitochondria is not something people would have thought of before this,” Steller says.

Brett Norman | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>