Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ready and waiting

06.09.2010
A subset of immune cells remain ideally positioned to respond quickly to the reappearance of previously encountered pathogens

Like a burglar tripping an alarm, infectious threats within the body set off a chain reaction of signaling events that enable the immune system to mount a proper defensive response. Once the crisis is averted, populations of target-specific ‘memory’ B cells ensure that any return visit by the same pathogen will be dealt with promptly and harshly.

Memory B cells initially arise within germinal centers in spleen lymph nodes, but it has proven challenging to determine whether they continue to reside there or circulate throughout the body. By applying sophisticated cellular imaging techniques, a team led by Tomohiro Kurosaki of the RIKEN Center for Allergy and Immunology in Yokohama has now resolved this question for at least one major subset of these cells1.

B cells are primarily categorized based on the immunoglobulin protein chains they incorporate into their antibodies, and Kurosaki’s team primarily focused their attention on immunoglobulin G-expressing (IgG+) cells. Using a variety of fluorescent labeling strategies, they were able to determine that IgG+ memory cells remain clustered close to the germinal centers long after the initial immune response in mice injected with the immunostimulatory molecule nitrophenol. By comparison, immunoglobulin M-expressing (IgM+) memory cells are found scattered at discrete sites throughout the spleen.

Subsequent experiments with a fluorescent indicator of cell division showed that IgG+ cells replicate rapidly in response to a secondary challenge with nitrophenol (Fig. 1), and that this process is dependent on direct interaction with helper T cells, which are also located in close proximity to germinal centers. The communication between these two cell types appears to directly contribute to elevated production of antigen-specific antibodies. “Although preliminary, our data suggest that IgG+ memory B cells are more prone to differentiate into antibody-producing plasma cells than IgM+ memory B cells, which may contribute to regeneration of the memory pool after a secondary antigen challenge,” says Kurosaki.

The memory cell-mediated immune response is generally faster and more robust with regard to target recognition than the ‘first encounter’ with a given pathogen, and Kurosaki believes that these findings represent an important step toward understanding the efficiency of the memory cell response. “Before our study, people believed that memory B cells leave the germinal centers and are recirculated all over the body by the lymphatic system and blood,” he says. “However, our study clearly demonstrates that some IgG—but not IgM—memory B cells reside continuously near germinal centers and thus [enable] rapid activation after antigen re-challenging.”

The corresponding author for this highlight is based at the Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology

Journal information

1. Aiba, Y., Kometani, K., Hamadate, M., Moriyama, S., Sakaue-Sawano, A., Tomura, M., Luche, H., Fehling, H.J., Casellas, R., Kanagawa, O. et al. Preferential localization of IgG memory B cells adjacent to contracted germinal centers. Proceedings of the National Academy of Sciences USA 107, 12192–12197 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6382
http://www.researchsea.com

Further reports about: Allergy B cells IgG+ RIKEN cell type immune response lymph node memory cell

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>