Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ready, Go!

Just like orchestra musicians waiting for their cue, RNA polymerase II molecules are poised at the start site of many developmentally controlled genes, waiting for the “Go!”- signal to read their part of the genomic symphony.

An assembly of transcription elongation factors known as Super Elongation Complex, or SEC for short, helps paused RNA polymerases to come online and start transcribing the gene ahead, found researchers at the Stowers Institute for Medical Research.

Published in the July 15, 2011, issue of Genes and Development, their study not only assigns a new role to the SEC, but also emphasizes the importance of transcription elongation control for the rapid induction of genes in response to developmental and environmental cues.

“Our findings indicated that SEC facilitates the coordinated and controlled induction of genes that are active during the early developmental stages,” says Ali Shilatifard, Ph.D., investigator and the study’s senior author. “Having preloaded Pol II and general transcription factors reduces the number of steps required for productive transcription and allows cells to respond quickly to internal and external signals.”

Transcriptional control by RNA polymerase II (Pol II) is a tightly orchestrated, multistep process that requires the concerted action of a large number of players to successfully transcribe the full length of genes. For many years, the initiation of transcription—the assembly of the basal transcription machinery at the start site—was considered the rate-limiting step. “We know now that the elongation step is a major node for the regulation of gene expression,” says Shilatifard. “In fact, we have shown that mislocated elongation factors are the cause for pathogenesis of infant acute lymphoblastic and mixed lineage leukemia.”

Mixed lineage leukemia is caused by a chromosomal translocation of the gene named MLL, resulting in its fusion to a seemingly random collection of other genes. Although the translocation partners don’t share any obvious similarities, they all create potent leukemia-causing hybrid genes. In an earlier study, Chengqi Lin, a graduate student in Shilatifard’s lab and first author on the current study, had identified the novel Super Elongation Complex (SEC) as the common denominator shared by all MLL-fusion proteins.

“We found that several frequent translocation partners of MLL are part of a super elongation complex that can activate paused Pol II. The accidental activation of developmentally regulated genes could explain how leukemia arises as a result of MLL translocations,” explains Lin. “However, the function of SEC in our cells is not to give us leukemia, but rather to regulate transcription of developmentally regulated genes, and therefore, we tried to learn more about the normal biological function of SEC.”

They started talking to co-author Robb Krumlauf, the Scientific Director of the Stowers Institute, who has long been interested in Hox genes. Expressed early during development, Hox genes are key regulators of an organism’s basic body plan. Instead of being scattered about the genome randomly they congregate into tight clusters on several chromosomes. A previous collaborative study between Krumlauf’s and Shilatifard’s laboratories demonstrated that Hox gene expression is differentially regulated by MLL. “In light of the functional links between MLL and SEC emerging from Shilatifard’s lab it made sense to study the induction of Hox genes in murine embryonic stem cells, as model system to learn more about SEC and its role during early development,” recalls Krumlauf.

“Hox genes are not only rapidly turned on in differentiating ES cells but because precise regulation of their gene expression is so important to coordinating normal development, they seem to use every known mechanism in the book,” says Krumlauf. “Rather than studying 40 different genes to search for a relevant use of a regulatory mechanism you can often look at the Hox clusters and uncover relevant examples. This makes them a great model system to learn more about the fundamentals of controlling gene expression.”

After initial experiments revealed that SEC is frequently present at highly transcribed regions, Lin in Shilatifard’s lab and Bony De Kumar in Krumlauf’s lab zoomed in on the Hox gene clusters in murine embryonic stem cells. Although both Hoxa1 and Hoxb1 were rapidly induced after treating the cells with retinoic acid, only Hoxa1 was occupied and engaged by paused Pol II. “They are the first genes to be activated within their respective clusters but Hoxa1 is a little bit faster than Hoxb1,” Krumlauf’s says, “which Lin showed is likely the result of the presence of preloaded Pol II on Hoxa1.”

When he expanded his analysis to the whole genome, Lin was able to identify a set of rapidly induced genes that contain paused Pol II. Many of them also recruit SEC in a fairly synchronous and uniform manner to the treatment with retinoic acid, which signals embryonic stem cells to turn on early developmental genes.

One notable exception among the first responders was the gene Cyp26a1, which encodes a cytochrome P450 that metabolizes retinoic acid and is essential for development. Although it lacks preloaded Pol II it is rapidly induced and still needed SEC for its rapid activation. “Not only did it come up extremely fast but it was also induced to much higher levels than the other very early retinoic acid-induced genes containing Pol II,” observed Lin.

“Paused Pol II may not be strictly necessary for rapid induction, but rather facilitate coordinated and controlled induction,” says Shilatifard. “Having preloaded Pol II and general transcription factors reduces the number of steps required for productive transcription and could result in a more equivalent and uniform way to induce gene expression.”

Researchers who also contributed to the work include Alexander S. Garrett, Edwin R. Smith, Madelaine Gogol and Christopher Seidel.

This study was supported National Institutes of Health, and the National Cancer Institute grants R01CA89455, R01CA150265, Alex’s Lemonade Stand Foundation for Childhood Cancer grant and generous funding from the Stowers Institute for Medical Research.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over a half billion dollars in pursuit of its mission.

Currently the Institute is home to nearly 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at Learn more about American Century Investments at

Gina Kirchweger | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>