Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reading the Human Genome

28.02.2013
Berkeley Lab Researchers Produce First Step-by-Step Look at Transcription Initiation
Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have achieved a major advance in understanding how genetic information is transcribed from DNA to RNA by providing the first step-by-step look at the biomolecular machinery that reads the human genome.

“We’ve provided a series of snapshots that shows how the genome is read one gene at a time,” says biophysicist Eva Nogales who led this research. “For the genetic code to be transcribed into messenger RNA, the DNA double helix has to be opened and the strand of gene sequences has to be properly positioned so that RNA polymerase, the enzyme that catalyzes transcription, knows where the gene starts. The electron microscopy images we produced show how this is done.”

Says Paula Flicker of the National Institutes of Health’s National Institute of General Medical Sciences, which partly funded the research, “The process of transcription is essential to all living things so understanding how it initiates is enormously important. This work is a beautiful example of integrating multiple approaches to reveal the structure of a large molecular complex and provide insight into the molecular basis of a fundamental cellular process.”

Nogales, who holds joint appointments with Berkeley Lab, the University of California (UC) at Berkeley, and the Howard Hughes Medical Institute (HHMI), is the corresponding author of a paper describing this study in the journal Nature. The paper is titled “Structural visualization of key steps in human transcription initiation.” Co-authors are Yuan He, Jie Fang and Dylan Taatjes.

The fundamental process of life by which information in the genome of a living cell is used to generate biomolecules that carry out cellular activities is the so-called “central dogma of molecular biology.” It states that genetic information flows from DNA to RNA to proteins. This straightforward flow of information is initiated by an elaborate system of proteins that operate in a highly choreographed fashion with machine-like precision. Understanding how this protein machinery works in the context of passing genetic information from DNA to RNA (transcription) is a must for identifying malfunctions that can turn cells cancerous or lead to a host of other problems.

Berkeley Lab researchers have produced the first step-by-step snapshots of the assembly of transcription factors and RNA polymerase into a transcription pre-initiation complex. (Image courtesy of Nogales group)

Nogales and members of her research group used cryo-electron microscopy (cryo-EM), where protein samples are flash-frozen at liquid nitrogen temperatures to preserve their structure, to carry out in vitro studies of reconstituted and purified versions of the “transcription pre-initiation complex.” This complex is a large assemblage of proteins comprised of RNA polymerase II (Pol II) plus a class of proteins known as general transcription factors that includes the TATA-binding protein (TBP), TFIIA, TFIIB, TFIIF, TFIIE and TFIIH. All of the components in this complex work together to ensure the accurate loading of DNA into Pol II at the start of a gene sequence.

“There’s been a lack of structural information on how the transcription pre-initiation complex complex is assembled, but with cryo-EM and our in vitro reconstituted system we’ve been able to provide pseudo-atomic models at various stages of transcription initiation that illuminate critical molecular interactions during this step-by-step process,” Nogales says.

The in vitro reconstituted transcription pre-initiation complex was developed by Yuan He, lead author on the Nature paper and a post-doctoral student in Nogales’s research group.

“This reconstituted system provided a model for the sequential assembly pathway of transcription initiation and was essential for us to get the most biochemically homogenous samples,” Nogales says. “Also essential was our ability to use automated data collection and processing so that we could generate all our structures in a robust manner.”

Among the new details revealed in the step-by-step cryo-EM images was how the transcription factor protein TFIIF engages Pol II and promoter DNA to stabilize both a closed DNA pre-initiation complex and an open DNA-promoter complex, and also how it regulates the selection of a transcription start-site.

“Comparing the closed versus open DNA states led us to propose a model that describes how DNA is moved during the process of promoter opening,” says He. “Our studies provide insight into how THIIH uses ATP hydrolysis as a source of energy to actually open and push the DNA to the active site of Pol II.”

Nogales and her colleagues plan to further investigate the process of DNA loading into Pol II, as well as to include additional transcription factors into the assembly that are required for regulation of gene expression.

“Our goal is to actually build a structural model of the entire – more than two million daltons – protein machinery that recognizes and regulates all human DNA promoters,” Nogales says. “For now we have the structural framework that’s been needed to integrate biochemical and structural data into a unified mechanistic understanding of transcription initiation.”

This research was funded by the National Institute of General Medical Sciences and the National Cancer Institute under NIH grant numbers GM063072 and CA127364.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>