Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reading the fine print of perception - The human brain learns by interpreting details

Wine connoisseurs recognize the vintage at the first sip, artists see subtle color variations and the blind distinguish the finest surface structures. Why are they considered superior to laymen in their field?

Researchers at Charité – Universitätsmedizin Berlin, the Bernstein Center Berlin, the NeuroCure Cluster of Excellence and the Otto-von-Guericke University of Magdeburg, have determined which areas of the brain are particularly active when perceptual skills are trained.

In the current issue of the journal Neuron*, they show how one becomes an expert: not by increasing the resolution with which our brain encodes our environment. Instead we learn by improving our ability to distinguish subtle details better.

The researchers from the research group of Prof. John-Dylan Haynes, Director of the Berlin Center for Advanced Neuroimaging at the Charité, have examined, together with colleagues from Magdeburg, how brain activity changes across the course of a learning process. For this, they measured changes in nerve cell activity in the brain with the help of functional magnetic resonance imaging (fMRI) while participants learned to tell differences between visual images.

Their reasoning was: if the learning effect is primarily based on an increasingly detailed representation of the stimuli, then the visual center should be involved in learning. However, if progress is due to an improved interpretation of the stimuli in the brain, then learning should involve brain areas for decision making.

“The fMRI measurements clearly showed that the activity in the visual center remained the same during the entire learning process,” said Prof. Haynes. “However, a region in the prefrontal cortex, which plays an important role in the interpretation of stimuli, was becoming more and more involved”. Hence, the researchers concluded that the learning process takes place at the level of decision making. “If our perception sharpens in learning, then this is not so much due to the fact that more information reaches the brain,” concluded Professor Haynes. “Instead we learn more and more to correctly interpret the given information. We see details in pictures that we were not aware of at the beginning.”

The researchers investigated the learning processes using simple geometric images. In the experiment, the twenty subjects looked at a small stripe pattern on a screen for a short time. They should decide in which direction the stripes pointed. Over time they could recognize details better and better. “Now it would be possible to use our approach to investigate whether similar effects also holds true say for wine connoisseurs or top chefs,” said Prof. Haynes.

Thorsten Kahn, PhD student at the Bernstein Center for Computational Neuroscience developed a mathematical model for this study that predicts the learning processes in the brain very precisely. “Such models are very important to systematically analyse the data,” said the young researcher. “The collaboration between modeling and data collection works particularly well in the Bernstein Center where psychologists, physicians, physicists and mathematicians work together.”

FMRI is a method that allows to measuring brain activity non-invasively using strong magnetic fields. Over the last few years the research group of Prof. Haynes has been involved in developing approaches that improve the readout of information from such brain signals.

The Bernstein Center Berlin is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

For further information please contact:
Prof. John-Dylan Haynes
Bernstein Center for Computational Neuroscience
Charité – Universitätsmedizin Berlin
Philippstrasse 13, Haus 6
10115 Berlin
Original publication:
*Kahnt et al., Perceptual Learning and Decision-Making in Human Medial Frontal Cortex, Neuron (2011), doi:10.1016/ j.neuron.2011.02.054

Weitere Informationen: Bernstein Center Berlin National Network Computational Neuroscience Charité - Universitätsmedizin Berlin NeuroCure, Cluster of Excellence

Johannes Faber | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>