Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reading the fine print of perception - The human brain learns by interpreting details

16.05.2011
Wine connoisseurs recognize the vintage at the first sip, artists see subtle color variations and the blind distinguish the finest surface structures. Why are they considered superior to laymen in their field?

Researchers at Charité – Universitätsmedizin Berlin, the Bernstein Center Berlin, the NeuroCure Cluster of Excellence and the Otto-von-Guericke University of Magdeburg, have determined which areas of the brain are particularly active when perceptual skills are trained.

In the current issue of the journal Neuron*, they show how one becomes an expert: not by increasing the resolution with which our brain encodes our environment. Instead we learn by improving our ability to distinguish subtle details better.

The researchers from the research group of Prof. John-Dylan Haynes, Director of the Berlin Center for Advanced Neuroimaging at the Charité, have examined, together with colleagues from Magdeburg, how brain activity changes across the course of a learning process. For this, they measured changes in nerve cell activity in the brain with the help of functional magnetic resonance imaging (fMRI) while participants learned to tell differences between visual images.

Their reasoning was: if the learning effect is primarily based on an increasingly detailed representation of the stimuli, then the visual center should be involved in learning. However, if progress is due to an improved interpretation of the stimuli in the brain, then learning should involve brain areas for decision making.

“The fMRI measurements clearly showed that the activity in the visual center remained the same during the entire learning process,” said Prof. Haynes. “However, a region in the prefrontal cortex, which plays an important role in the interpretation of stimuli, was becoming more and more involved”. Hence, the researchers concluded that the learning process takes place at the level of decision making. “If our perception sharpens in learning, then this is not so much due to the fact that more information reaches the brain,” concluded Professor Haynes. “Instead we learn more and more to correctly interpret the given information. We see details in pictures that we were not aware of at the beginning.”

The researchers investigated the learning processes using simple geometric images. In the experiment, the twenty subjects looked at a small stripe pattern on a screen for a short time. They should decide in which direction the stripes pointed. Over time they could recognize details better and better. “Now it would be possible to use our approach to investigate whether similar effects also holds true say for wine connoisseurs or top chefs,” said Prof. Haynes.

Thorsten Kahn, PhD student at the Bernstein Center for Computational Neuroscience developed a mathematical model for this study that predicts the learning processes in the brain very precisely. “Such models are very important to systematically analyse the data,” said the young researcher. “The collaboration between modeling and data collection works particularly well in the Bernstein Center where psychologists, physicians, physicists and mathematicians work together.”

FMRI is a method that allows to measuring brain activity non-invasively using strong magnetic fields. Over the last few years the research group of Prof. Haynes has been involved in developing approaches that improve the readout of information from such brain signals.

The Bernstein Center Berlin is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

For further information please contact:
Prof. John-Dylan Haynes
Bernstein Center for Computational Neuroscience
Charité – Universitätsmedizin Berlin
Philippstrasse 13, Haus 6
10115 Berlin
E-Mail: haynes@bccn-berlin.de
http://www.bccn-berlin.de/People/haynes
Original publication:
*Kahnt et al., Perceptual Learning and Decision-Making in Human Medial Frontal Cortex, Neuron (2011), doi:10.1016/ j.neuron.2011.02.054

http://www.cell.com/neuron/abstract/S0896-6273%2811%2900296-0

Weitere Informationen:
http://www.bccn-berlin.de Bernstein Center Berlin
http://www.nncn.de National Network Computational Neuroscience
http://www.charite.de Charité - Universitätsmedizin Berlin
http://www.neurocure.de NeuroCure, Cluster of Excellence

Johannes Faber | idw
Further information:
http://www.bernstein-netzwerk.de

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>