Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Read, delete and grow

15.08.2011
Plants switch off growth signals by targeting ‘used’ receptor molecules for destruction

Plants coordinate growth using hormones called brassinosteroids (BR), and defects in the associated signaling pathway can result in profoundly stunted development. For example, researchers have identified numerous mutations within the gene encoding the BR receptor, BRI1, which yield plants with a dwarf phenotype.

The bri1-5 mutation does not directly disrupt receptor function, but nevertheless inhibits growth of thale cress, Arabidopsis thaliana, plants by somehow accelerating the rate of receptor degradation. The discovery of an additional mutation that fully counteracts this effect has now revealed valuable insights into how plants manage to keep a tight rein on growth signals.

When Guang Wu and Joanne Chory of the Salk Institute for Biological Studies, USA, identified this enigmatic sbi1 mutant, they partnered with Yuji Kamiya, a biologist at the RIKEN Plant Science Center in Yokohama. “We wanted to know the reason why sbi1 plants recover from the dwarf phenotype,” says Kamiya, “and so Wu visited my laboratory to study the mechanism of the BRI1 gene.”

An initial series of experiments provided strong evidence that the sbi1 mutant disrupts the function of a negative regulator of BRI1, which appears to act on the receptor after it has been activated by binding BR. The researchers were subsequently able to uncover the affected SBI1 gene, which encodes a member of the leucine carboxylmethyltransferase (LCMT) enzyme family.

LCMTs selectively attach methyl chemical groups onto the catalytic subunit of protein phosphatase 2A (PP2A), a multi-protein complex that deactivates a variety of receptors and other signaling proteins. Accordingly, Wu, Kamiya and colleagues found evidence that SBI1 methylates PP2A within Arabidopsis cells. This chemical modification activates the complex and alters its localization within the cell, bringing it into close proximity to BRI1 and thereby enabling it to switch off the receptor. SBI1 production is directly stimulated by BR signaling, further reinforcing this negative feedback loop.

These newly inactivated receptor molecules appear to be subsequently targeted for destruction. “We found that activated receptors that have bound BR transfer their signal to the nucleus and then get degraded, while unbound BR receptor is recycled rather than being degraded,” explains Kamiya. “By this mechanism, receptor levels are controlled in plants.”

Although similar regulatory systems are known to operate in animal cells, PP2A function is poorly understood in plants, and further investigation will be needed to determine whether this represents a general mechanism for constraining receptor signaling in Arabidopsis and other species.

The corresponding author for this highlight is based at the Growth Regulation Research Group, RIKEN Plant Science Center

Reference:
Wu, G., Wang, X., Li, X., Kamiya, Y., Otegui, M.S. & Chory, J. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling 4, ra29 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Arabidopsis thaliana PP2A RIKEN SBI1 signaling protein

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>