Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Read, delete and grow

15.08.2011
Plants switch off growth signals by targeting ‘used’ receptor molecules for destruction

Plants coordinate growth using hormones called brassinosteroids (BR), and defects in the associated signaling pathway can result in profoundly stunted development. For example, researchers have identified numerous mutations within the gene encoding the BR receptor, BRI1, which yield plants with a dwarf phenotype.

The bri1-5 mutation does not directly disrupt receptor function, but nevertheless inhibits growth of thale cress, Arabidopsis thaliana, plants by somehow accelerating the rate of receptor degradation. The discovery of an additional mutation that fully counteracts this effect has now revealed valuable insights into how plants manage to keep a tight rein on growth signals.

When Guang Wu and Joanne Chory of the Salk Institute for Biological Studies, USA, identified this enigmatic sbi1 mutant, they partnered with Yuji Kamiya, a biologist at the RIKEN Plant Science Center in Yokohama. “We wanted to know the reason why sbi1 plants recover from the dwarf phenotype,” says Kamiya, “and so Wu visited my laboratory to study the mechanism of the BRI1 gene.”

An initial series of experiments provided strong evidence that the sbi1 mutant disrupts the function of a negative regulator of BRI1, which appears to act on the receptor after it has been activated by binding BR. The researchers were subsequently able to uncover the affected SBI1 gene, which encodes a member of the leucine carboxylmethyltransferase (LCMT) enzyme family.

LCMTs selectively attach methyl chemical groups onto the catalytic subunit of protein phosphatase 2A (PP2A), a multi-protein complex that deactivates a variety of receptors and other signaling proteins. Accordingly, Wu, Kamiya and colleagues found evidence that SBI1 methylates PP2A within Arabidopsis cells. This chemical modification activates the complex and alters its localization within the cell, bringing it into close proximity to BRI1 and thereby enabling it to switch off the receptor. SBI1 production is directly stimulated by BR signaling, further reinforcing this negative feedback loop.

These newly inactivated receptor molecules appear to be subsequently targeted for destruction. “We found that activated receptors that have bound BR transfer their signal to the nucleus and then get degraded, while unbound BR receptor is recycled rather than being degraded,” explains Kamiya. “By this mechanism, receptor levels are controlled in plants.”

Although similar regulatory systems are known to operate in animal cells, PP2A function is poorly understood in plants, and further investigation will be needed to determine whether this represents a general mechanism for constraining receptor signaling in Arabidopsis and other species.

The corresponding author for this highlight is based at the Growth Regulation Research Group, RIKEN Plant Science Center

Reference:
Wu, G., Wang, X., Li, X., Kamiya, Y., Otegui, M.S. & Chory, J. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling 4, ra29 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Arabidopsis thaliana PP2A RIKEN SBI1 signaling protein

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>