Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-expression of an embryonic signaling pathway in Melanoma utilizes different receptors

15.09.2014

Metastatic melanoma is a highly aggressive skin cancer whose incidence is on the rise at an alarming rate. Research has revealed that metastatic tumor cells share similar signaling pathways with embryonic stem cells to sustain plasticity and growth. However, major regulators of these pathways are often missing in tumor cells, thus allowing uncontrolled tumor growth and spreading to occur.

During early vertebrate development, Nodal, an embryonic growth factor that governs the growth, pattern and position of tissues, is critical for normal maturation. Nodal plays a significant role in maintaining the pluripotency of embryonic stem cells, meaning the ability of stem cells to differentiate into any of the three germ layers that comprise the body.

The recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self-renewal and maintenance of the stem cell-like characteristics of tumor cells such as melanoma. However, the signaling pathway receptors utilized by melanoma cells to propagate Nodal's effect remain(s) mostly anecdotal and unexplored.

The laboratory of Mary J.C. Hendrix, PhD made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of receptors known as Type I serine/threonine kinase(s), but diverge in their Type II receptor expression.

Further testing indicated that metastatic melanoma cells and embryonic stem cells use different receptors for Nodal signal transduction. These findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways in cancer.

This work is published in the International Journal of Cancer. Mary J.C. Hendrix, PhD points out: "Nodal-expressing tumor cells don't respond favorably to conventional therapies, supporting the premise that a combinatorial approach to targeting Nodal subpopulations within tumors, along with a front-line therapy, would constitute a more rational approach for treating aggressive cancer".

Zhila Khalkhali-Ellis, PhD, senior research scientist in the Hendrix laboratory and the lead author says: "Our discoveries are important for advanced stage aggressive melanoma. Given that limited therapeutic options are currently available for this cancer, we have the opportunity to investigate whether the receptors can be modulated so that the signaling molecule can be neutralized to decrease aggressive behavior." The research was supported by the National Institutes of Health.

###

Zhila Khalkhali-Ellis, PhD is Research Associate Professor of Pediatrics at Northwestern University Feinberg School of Medicine; and a member of the Cancer Biology and Epigenomics Program of Stanley Manne Children's Research Institute, affiliated with Ann & Robert H. Lurie Children's Hospital of Chicago.

Mary J.C. Hendrix, PhD is President & Scientific Director of Manne Research Institute; Children's Research Fund Professor; William G. Swartchild, Jr. Distinguished Research Professor at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The research team includes members of the Department of Pediatrics at Northwestern University Feinberg School of Medicine, Chicago, Illinois and the Department of Biochemistry at the University of Texas Health Sciences Center, San Antonio, Texas.

Full citation: Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJC. Divergence(s) in Nodal Signaling Between Aggressive Melanoma and Embryonic Stem Cells. International Journal of Cancer. Available online September 9, 2014.

Stanley Manne Children's Research Institute is the research arm of Ann & Robert H. Lurie Children's Hospital of Chicago, the pediatric teaching hospital for Northwestern University Feinberg School of Medicine. The research institute is also one of the interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research institute are full-time faculty members.

225 E. Chicago Ave., Box 205
Chicago, IL 60611
http://www.luriechildrensresearch.org
Affiliated with Northwestern University Feinberg School of Medicine

Peggy Murphy | Eurek Alert!

Further reports about: Cancer Health Medicine aggressive melanoma metastatic pathway

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>