Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rattlesnakes Sound Warning on Biodiversity, Habitat Fragmentation

22.04.2010
Like the canary in the coal mine, the timber rattlesnake may be telling us something about the environment we share.

Cornell University researchers – using cutting-edge tools including fine-scale molecular genetics and microsatellite markers – tracked the rattlesnakes to understand how wildlife habitats are affected by even modest human encroachment.

“We used this species as a model to investigate general processes underlying population-level responses to habitat fragmentation,” said the authors, led by Cornell post-doctoral researcher Rulon Clark, in the paper “Roads, Interrupted Dispersal and Genetic Diversity in Timber Rattlesnakes,” currently available online and to be published in the journal Conservation Biology (August 2010).

Researchers discovered that fragmentation of natural habitats by roads – even smaller, low-traffic highways – has had a significant effect over the past 80 years on genetic structure of timber rattlesnakes in four separate regions of upstate New York. Less genetic diversity means populations become more susceptible to illness or environmental changes that threaten their survival.

“Our study adds to a growing body of literature indicating that even anthropogenic habitat modifications that does not destroy a large amount of habitat can create significant barriers to gene flow,” said researchers.

While the rattlesnakes shorter lifespan and method of travel may help make the impact of roadways relatively quick and dramatic, the new findings reinforce earlier work on other terrestrial animals – from grizzly bears to frogs – and provides a fresh warning about habitat fragmentation that all plans for future human development must consider.

Researchers used fine-scale molecular genetics as well as behavioral and ecological data to look at timber rattlesnakes from 19 different hibernacula – shared wintering quarters – in four regions in New York: the Adirondacks, Sterling Forest, Bear Mountain and Chemung County. In each case they used microsatellite markers to track how populations dispersed from their winter dens, their subsequent reproductive patterns and how roads in these areas altered that gene flow. The roads themselves – all paved roadways built in the late 1920s to early 19030s for motorized traffic – were examined for use and relationship to natural barriers. Tissue samples were examined from more than 500 individual snakes.

“Over all four regions and 19 hibernacula, none of the genetic clusters … spanned either major or minor roads; hibernacula belonging to the same genetic deme were always on the same side of the road,” the paper states. “This fine-scaled analysis, repeated over four geographic regions, underscores the significance of roads as barrier to dispersal and natural population processes for timber rattlesnakes and perhaps other species.”

The research team also included Kelly Zamudio, Cornell University ecology and evolutionary biology professor; William Brown, professor of biology at Skidmore College, Saratoga Springs, N.Y.; and Randy Stechert, an environmental consultant for the New York State Department of Environmental Conservation. Clark is currently an assistant professor at San Diego State University.

The research was funded by the National Science Foundation and the New York State Biodiversity Research Institute.

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>