Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rattlesnakes Sound Warning on Biodiversity, Habitat Fragmentation

22.04.2010
Like the canary in the coal mine, the timber rattlesnake may be telling us something about the environment we share.

Cornell University researchers – using cutting-edge tools including fine-scale molecular genetics and microsatellite markers – tracked the rattlesnakes to understand how wildlife habitats are affected by even modest human encroachment.

“We used this species as a model to investigate general processes underlying population-level responses to habitat fragmentation,” said the authors, led by Cornell post-doctoral researcher Rulon Clark, in the paper “Roads, Interrupted Dispersal and Genetic Diversity in Timber Rattlesnakes,” currently available online and to be published in the journal Conservation Biology (August 2010).

Researchers discovered that fragmentation of natural habitats by roads – even smaller, low-traffic highways – has had a significant effect over the past 80 years on genetic structure of timber rattlesnakes in four separate regions of upstate New York. Less genetic diversity means populations become more susceptible to illness or environmental changes that threaten their survival.

“Our study adds to a growing body of literature indicating that even anthropogenic habitat modifications that does not destroy a large amount of habitat can create significant barriers to gene flow,” said researchers.

While the rattlesnakes shorter lifespan and method of travel may help make the impact of roadways relatively quick and dramatic, the new findings reinforce earlier work on other terrestrial animals – from grizzly bears to frogs – and provides a fresh warning about habitat fragmentation that all plans for future human development must consider.

Researchers used fine-scale molecular genetics as well as behavioral and ecological data to look at timber rattlesnakes from 19 different hibernacula – shared wintering quarters – in four regions in New York: the Adirondacks, Sterling Forest, Bear Mountain and Chemung County. In each case they used microsatellite markers to track how populations dispersed from their winter dens, their subsequent reproductive patterns and how roads in these areas altered that gene flow. The roads themselves – all paved roadways built in the late 1920s to early 19030s for motorized traffic – were examined for use and relationship to natural barriers. Tissue samples were examined from more than 500 individual snakes.

“Over all four regions and 19 hibernacula, none of the genetic clusters … spanned either major or minor roads; hibernacula belonging to the same genetic deme were always on the same side of the road,” the paper states. “This fine-scaled analysis, repeated over four geographic regions, underscores the significance of roads as barrier to dispersal and natural population processes for timber rattlesnakes and perhaps other species.”

The research team also included Kelly Zamudio, Cornell University ecology and evolutionary biology professor; William Brown, professor of biology at Skidmore College, Saratoga Springs, N.Y.; and Randy Stechert, an environmental consultant for the New York State Department of Environmental Conservation. Clark is currently an assistant professor at San Diego State University.

The research was funded by the National Science Foundation and the New York State Biodiversity Research Institute.

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>