Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats have a double view of the world

27.05.2013
Rodents move their eyes in opposite directions, thereby always keeping an eye on the airspace above them

Scientists from the Max Planck Institute for Biological Cybernetics in Tübingen, using miniaturised high-speed cameras and high-speed behavioural tracking, discovered that rats move their eyes in opposite directions in both the horizontal and the vertical plane when running around.


Rats process visual information from their eyes similar to other mammals. Nevertheless, their eyes move in a very different way. Unlike humans, their eyes can move in opposite directions.
© MPI for Biological Cybernetics/Kerr

Each eye moves in a different direction, depending on the change in the animal’s head position. An analysis of both eyes’ field of view found that the eye movements exclude the possibility that rats fuse the visual information into a single image like humans do. Instead, the eyes move in such a way that enables the space above them to be permanently in view – presumably an adaptation to help them deal with the major threat from predatory birds that rodents face in their natural environment.

Like many mammals, rats have their eyes on the sides of their heads. This gives them a very wide visual field, useful for detection of predators. However, three-dimensional vision requires overlap of the visual fields of the two eyes. Thus, the visual system of these animals needs to meet two conflicting demands at the same time; on the one hand maximum surveillance and on the other hand detailed binocular vision.

The research team from the Max Planck Institute for Biological Cybernetics have now, for the first time, observed and characterised the eye movements of freely moving rats. They fitted minuscule cameras weighing only about one gram to the animals’ heads, which could record the lightning-fast eye movements with great precision. The scientists also used another new method to measure the position and direction of the head, enabling them to reconstruct the rats’ exact line of view at any given time.

The Max Planck scientists’ findings came as a complete surprise. Although rats process visual information from their eyes through very similar brain pathways to other mammals, their eyes evidently move in a totally different way. “Humans move their eyes in a very stereotypical way for both counteracting head movements and searching around. Both our eyes move together and always follow the same object. In rats, on the other hand, the eyes generally move in opposite directions,” explains Jason Kerr from the Max Planck Institute for Biological Cybernetics.

In a series of behavioural experiments, the neurobiologists also discovered that the eye movements largely depend on the position of the animal’s head. “When the head points downward, the eyes move back, away from the tip of the nose. When the rat lifts its head, the eyes look forward: cross-eyed, so to speak. If the animal puts its head on one side, the eye on the lower side moves up and the other eye moves down.” says Jason Kerr.

In humans, the direction in which the eyes look must be precisely aligned, otherwise an object cannot be fixated. A deviation measuring less than a single degree of the field of view is enough to cause double vision. In rats, the opposing eye movements between left and right eye mean that the line of vision varies by as much as 40 degrees in the horizontal plane and up to 60 degrees in the vertical plane. The consequence of these unusual eye movements is that irrespective of vigorous head movements in all planes, the eyes movements always move in such a way to ensure that the area above the animal is always in view simultaneously by both eyes –something that does not occur in any other region of the rat’s visual field.

These unusual eye movements that rats possess appear to be the visual system’s way of adapting to the animals’ living conditions, given that they are preyed upon by numerous species of birds. Although the observed eye movements prevent the fusion of the two visual fields, the scientists postulate that permanent visibility in the direction of potential airborne attackers dramatically increases the animals’ chances of survival.

Contact

Dr. Jason Kerr
Max Planck Institute for Biological Cybernetics, Tübingen
Phone: +49 70 7160-11721
Email: Jason@­tuebingen.mpg.de
Dr. Harald Rösch
Press and Public Relations
Administrative Headquarters of the Max Planck Society, München
Phone: +49 89 2198-1756
Email: roesch@­gv.mpg.de

Original publication
Damian J.Wallace, David S. Greenberg, Juergen Sawinski, Stefanie Rulla, Giuseppe Notaro, & Jason N. D. Kerr
Rats maintain an overhead binocular field at the expense of constant fusion
Nature, online May 26, 2013: doi:10.1038/nature12153

Dr. Jason Kerr | Max-Planck-Institute
Further information:
http://www.mpg.de/7269965/rats-overhead-binocular-field

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>