Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats have a double view of the world

27.05.2013
Rodents move their eyes in opposite directions, thereby always keeping an eye on the airspace above them

Scientists from the Max Planck Institute for Biological Cybernetics in Tübingen, using miniaturised high-speed cameras and high-speed behavioural tracking, discovered that rats move their eyes in opposite directions in both the horizontal and the vertical plane when running around.


Rats process visual information from their eyes similar to other mammals. Nevertheless, their eyes move in a very different way. Unlike humans, their eyes can move in opposite directions.
© MPI for Biological Cybernetics/Kerr

Each eye moves in a different direction, depending on the change in the animal’s head position. An analysis of both eyes’ field of view found that the eye movements exclude the possibility that rats fuse the visual information into a single image like humans do. Instead, the eyes move in such a way that enables the space above them to be permanently in view – presumably an adaptation to help them deal with the major threat from predatory birds that rodents face in their natural environment.

Like many mammals, rats have their eyes on the sides of their heads. This gives them a very wide visual field, useful for detection of predators. However, three-dimensional vision requires overlap of the visual fields of the two eyes. Thus, the visual system of these animals needs to meet two conflicting demands at the same time; on the one hand maximum surveillance and on the other hand detailed binocular vision.

The research team from the Max Planck Institute for Biological Cybernetics have now, for the first time, observed and characterised the eye movements of freely moving rats. They fitted minuscule cameras weighing only about one gram to the animals’ heads, which could record the lightning-fast eye movements with great precision. The scientists also used another new method to measure the position and direction of the head, enabling them to reconstruct the rats’ exact line of view at any given time.

The Max Planck scientists’ findings came as a complete surprise. Although rats process visual information from their eyes through very similar brain pathways to other mammals, their eyes evidently move in a totally different way. “Humans move their eyes in a very stereotypical way for both counteracting head movements and searching around. Both our eyes move together and always follow the same object. In rats, on the other hand, the eyes generally move in opposite directions,” explains Jason Kerr from the Max Planck Institute for Biological Cybernetics.

In a series of behavioural experiments, the neurobiologists also discovered that the eye movements largely depend on the position of the animal’s head. “When the head points downward, the eyes move back, away from the tip of the nose. When the rat lifts its head, the eyes look forward: cross-eyed, so to speak. If the animal puts its head on one side, the eye on the lower side moves up and the other eye moves down.” says Jason Kerr.

In humans, the direction in which the eyes look must be precisely aligned, otherwise an object cannot be fixated. A deviation measuring less than a single degree of the field of view is enough to cause double vision. In rats, the opposing eye movements between left and right eye mean that the line of vision varies by as much as 40 degrees in the horizontal plane and up to 60 degrees in the vertical plane. The consequence of these unusual eye movements is that irrespective of vigorous head movements in all planes, the eyes movements always move in such a way to ensure that the area above the animal is always in view simultaneously by both eyes –something that does not occur in any other region of the rat’s visual field.

These unusual eye movements that rats possess appear to be the visual system’s way of adapting to the animals’ living conditions, given that they are preyed upon by numerous species of birds. Although the observed eye movements prevent the fusion of the two visual fields, the scientists postulate that permanent visibility in the direction of potential airborne attackers dramatically increases the animals’ chances of survival.

Contact

Dr. Jason Kerr
Max Planck Institute for Biological Cybernetics, Tübingen
Phone: +49 70 7160-11721
Email: Jason@­tuebingen.mpg.de
Dr. Harald Rösch
Press and Public Relations
Administrative Headquarters of the Max Planck Society, München
Phone: +49 89 2198-1756
Email: roesch@­gv.mpg.de

Original publication
Damian J.Wallace, David S. Greenberg, Juergen Sawinski, Stefanie Rulla, Giuseppe Notaro, & Jason N. D. Kerr
Rats maintain an overhead binocular field at the expense of constant fusion
Nature, online May 26, 2013: doi:10.1038/nature12153

Dr. Jason Kerr | Max-Planck-Institute
Further information:
http://www.mpg.de/7269965/rats-overhead-binocular-field

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>