Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare neurons discovered in monkey brains

21.05.2012
Max Planck scientists discover brain cells in monkeys that may be linked to self-awareness and empathy in humans

The anterior insular cortex is a small brain region that plays a crucial role in human self-awareness and in related neuropsychiatric disorders. A unique cell type – the von Economo neuron (VEN) – is located there.


Macaque Von Economo Neuron retrogradely labeled in anterior Insula. Picture: Henry Evrard / Max Planck Institute for Biological Cybernetics

For a long time, the VEN was assumed to be unique to humans, great apes, whales and elephants. Henry Evrard, neuroanatomist at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, now discovered that the VEN occurs also in the insula of macaque monkeys.

The morphology, size and distribution of the monkey VEN suggest that it is at least a primal anatomical homolog of the human VEN. This finding offers new and much-needed opportunities to examine in detail the connections and functions of a cell and brain region that could have a key role in human self-awareness and in mental disorders including autism and specific forms of dementia.

The insular cortex, or simply insula, is a hidden cortical region folded and tucked away deep in the brain – an island within the cortex. Within the last decade, the insula has emerged from darkness as having a key role in diverse functions usually linked to our internal bodily states, to our emotions, to our self-awareness, and to our social interactions. The very anterior part of the insula in particular is where humans consciously sense subjective emotions, such as love, hate, resentment, self-confidence or embarrassment.

In relation to these feelings, the anterior insula is involved in various psychopathologies. Damage of the insula leads to apathy, and to the inability to tell what feelings we or our conversational partner experience. These inabilities and alteration of the insula are also encountered in autism and other highly detrimental neuropsychiatric disorders including the behavioral variant of frontotemporal dementia (bvFTD).

The von Economo neuron (VEN) occurs almost exclusively in the anterior insula and anterior cingulate cortex. Until recently it was believed that the VEN is only present in humans, great apes and some large-brained mammals with complex social behavior such as whales and elephants. In contrast to the typical neighboring pyramidal neuron that is present in all mammals and all brain regions, the VEN has a peculiar spindle shape and is about three times as large. Their numeral density is selectively altered in autism and bvFTD.

Henry Evrard and his team, at the Max Planck Institute for Biological Cybernetics in Tübingen now discovered VENs in the anterior insula in macaque monkeys. His present work provides compelling evidence that monkeys possess at least a primitive form of the human VEN although they do not have the ability to recognize themselves in a mirror, a behavioral hallmark of self-awareness.

“This means, other than previously believed, that highly concentrated VEN populations are not an exclusivity of hominids, but also occurs in other primate species”, explains Henry Evrard. “The VEN phylogeny needs to be reexamined. Most importantly, the very much-needed analysis of the connections and physiology of these specific neurons is now possible.” Knowing the functions of the VEN and its connections to other regions of the brain in monkeys could give us clues on the evolution of the anatomical substrate of self-awareness in humans and may help us in better understanding serious neuropsychiatric disabilities including autism, or even addictions such as to drugs or smoking.

Original Publication:
Henry C. Evrard, Thomas Forro, Nikos K. Logothetis (2012) Von Economo Neurons in the Anterior Insula of the Macaque Monkey. Neuron 74(3). doi: 10.1016
Contact:
Dr. Henry Evrard
Phone: +49 7071 601- 1724
E-mail: henry.evrard@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601- 1792
E-mail: presse-kyb@tuebingen.mpg.de
Printable images can be obtained at the Public Relations Office. Please send a proof upon publication.

The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://tuebingen.mpg.de/en/homepage/detail/rare-neurons-discovered-in-monkey-brains.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>