Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare neurons discovered in monkey brains

21.05.2012
Max Planck scientists discover brain cells in monkeys that may be linked to self-awareness and empathy in humans

The anterior insular cortex is a small brain region that plays a crucial role in human self-awareness and in related neuropsychiatric disorders. A unique cell type – the von Economo neuron (VEN) – is located there.


Macaque Von Economo Neuron retrogradely labeled in anterior Insula. Picture: Henry Evrard / Max Planck Institute for Biological Cybernetics

For a long time, the VEN was assumed to be unique to humans, great apes, whales and elephants. Henry Evrard, neuroanatomist at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany, now discovered that the VEN occurs also in the insula of macaque monkeys.

The morphology, size and distribution of the monkey VEN suggest that it is at least a primal anatomical homolog of the human VEN. This finding offers new and much-needed opportunities to examine in detail the connections and functions of a cell and brain region that could have a key role in human self-awareness and in mental disorders including autism and specific forms of dementia.

The insular cortex, or simply insula, is a hidden cortical region folded and tucked away deep in the brain – an island within the cortex. Within the last decade, the insula has emerged from darkness as having a key role in diverse functions usually linked to our internal bodily states, to our emotions, to our self-awareness, and to our social interactions. The very anterior part of the insula in particular is where humans consciously sense subjective emotions, such as love, hate, resentment, self-confidence or embarrassment.

In relation to these feelings, the anterior insula is involved in various psychopathologies. Damage of the insula leads to apathy, and to the inability to tell what feelings we or our conversational partner experience. These inabilities and alteration of the insula are also encountered in autism and other highly detrimental neuropsychiatric disorders including the behavioral variant of frontotemporal dementia (bvFTD).

The von Economo neuron (VEN) occurs almost exclusively in the anterior insula and anterior cingulate cortex. Until recently it was believed that the VEN is only present in humans, great apes and some large-brained mammals with complex social behavior such as whales and elephants. In contrast to the typical neighboring pyramidal neuron that is present in all mammals and all brain regions, the VEN has a peculiar spindle shape and is about three times as large. Their numeral density is selectively altered in autism and bvFTD.

Henry Evrard and his team, at the Max Planck Institute for Biological Cybernetics in Tübingen now discovered VENs in the anterior insula in macaque monkeys. His present work provides compelling evidence that monkeys possess at least a primitive form of the human VEN although they do not have the ability to recognize themselves in a mirror, a behavioral hallmark of self-awareness.

“This means, other than previously believed, that highly concentrated VEN populations are not an exclusivity of hominids, but also occurs in other primate species”, explains Henry Evrard. “The VEN phylogeny needs to be reexamined. Most importantly, the very much-needed analysis of the connections and physiology of these specific neurons is now possible.” Knowing the functions of the VEN and its connections to other regions of the brain in monkeys could give us clues on the evolution of the anatomical substrate of self-awareness in humans and may help us in better understanding serious neuropsychiatric disabilities including autism, or even addictions such as to drugs or smoking.

Original Publication:
Henry C. Evrard, Thomas Forro, Nikos K. Logothetis (2012) Von Economo Neurons in the Anterior Insula of the Macaque Monkey. Neuron 74(3). doi: 10.1016
Contact:
Dr. Henry Evrard
Phone: +49 7071 601- 1724
E-mail: henry.evrard@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601- 1792
E-mail: presse-kyb@tuebingen.mpg.de
Printable images can be obtained at the Public Relations Office. Please send a proof upon publication.

The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://tuebingen.mpg.de/en/homepage/detail/rare-neurons-discovered-in-monkey-brains.html

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>