Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare, lethal childhood disease tracked to protein

30.04.2013
A team of international researchers led by Northwestern Medicine scientists has identified how a defective protein plays a central role in a rare, lethal childhood disease known as Giant Axonal Neuropathy, or GAN. The finding is reported in the May 2013 Journal of Clinical Investigation.

GAN is an extremely rare and untreatable genetic disorder that strikes the central and peripheral nervous systems of young children. Those affected show no symptoms at birth; typically around age three the first signs of muscle weakness appear and progress slowly but steadily. Children with GAN experience increasing difficulty walking and are often wheelchair-bound by age 10. Over time, they become dependent on feeding and breathing tubes. Only a few will survive into young adulthood.

In GAN patients, nerve cells are swollen with massive build-ups of structures called intermediate filaments, cytoskeletal components that give cells their shape and mechanical properties. Goldman's team found that gigaxonin, a protein encoded by the gene involved in GAN, regulates normal turnover of the protein building blocks that form a cell's intermediate filaments. Mutations in this gene result in the malfunctioning of gigaxonin, which leads to the abnormal build-up of intermediate filaments and eventually disrupts the normal functioning of nerve cells.

"This important new research pinpoints the mechanism that allows intermediate filaments to rapidly build up in GAN patients," says Robert Goldman, chair of the department of cell and molecular biology at Northwestern University Feinberg School of Medicine. Goldman has studied the structural proteins of cells for more than 30 years.

"This is a huge step forward for GAN research," said Lori Sames, co-founder and CEO of Hannah's Hope Fund, the leading GAN disease organization. "GAN is juvenile ALS, but even worse. Not only do motor neurons die out, so do the sensory neurons. To find a medicinal therapy, you really need to know what mechanism to target. And thanks to Dr. Goldman's work, now we do."

To identify gigaxonin's role, scientists used cells known as fibroblasts obtained from skin biopsies of children with GAN. The cells were then grown in lab cultures, and they also contained large abnormal aggregates of intermediate filaments. When scientists introduced healthy gigaxonin genes into both control and patient fibroblasts, the results were dramatic. The abnormal aggregates of intermediate filaments disappeared. However, the cytoskeleton's two other major systems, microtubules and actin filaments were not affected by this treatment.

The study's lead author, Northwestern University postdoctoral fellow Saleemulla Mahammad, stressed that this discovery may also have implications for more common types of neurodegenerative diseases that are also characterized by large accumulations of intermediate filament proteins, including Alzheimer's disease and Parkinson's disease.

"Our results suggest new pathways for disease intervention," he said. "Finding a chemical component that can clear the intermediate filament aggregations and restore the normal distribution of intermediate filaments in cells could one day lead to a therapeutic agent for many neurological disorders."

Mahammad and other members of the Goldman Laboratory collaborated with Puneet Opal, M.D., associate professor in the Ken and Ruth Davee department of neurology and cell and molecular biology, along with researchers in the laboratory of Pascale Bomont, at the INSERM neurological institute in Montpelier, France, and the laboratory of Jean-Pierre Julien at the Université Laval in Quebec, Canada.

This research was supported by the National Institute of General Medical Sciences NIH grant 1P01GM096971-01 and Hannah's Hope Fund. The leading GAN disease foundation, Hannah's Hope Fund, was established in 2008, and currently knows of 38 cases of the disease worldwide. The foundation is currently working towards funding a clinical trial for GAN gene therapy.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>