Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare Earth Elements Excite Protein Probes

28.08.2008
UIC biochemist Lawrence Miller has received a four-year, $1.16 million grant to develop a way to image single biological molecules in living cells by using lanthanide molecules to tag proteins being tracked

Seeing what's going on inside living cells at the molecular level may reveal biological mechanisms and ultimately lead to more effective medicines. While sophisticated microscopes allow scientists to take pictures of a single molecule, capturing images of single molecules in a living cell has been particularly challenging. The molecules must be "tagged" to made visible under the microscope.

Lawrence Miller, assistant professor of chemistry at the University of Illinois at Chicago, hopes to meet that challenge with the help of a four-year, $1.16 million grant from the National Institutes of Health.

"Over the past 10 years, there's been a revolution of sorts in studying protein function in living systems using microscopy to follow dynamic movements and localizations of particular protein molecules," said Miller.

To image a protein, it must be tagged with what is called a reporter -- another protein or even a small organic molecule with special optical properties, such as fluorescence. When fluorescent reporters are illuminated with light of a particular color, they give off a different color light. Fluorescence makes it possible to distinguish reporter-tagged proteins from untagged proteins in the cell.

Common fluorescent reporter molecules make it easy to see multiple copies of a tagged protein in a cell. However, it is difficult to observe a single copy because of other fluorescent molecules in cells. Light from these other fluorescent molecules generates background noise that can obscure the reporter-tagged protein of interest.

But there are ways to distinguish reporter molecules from background fluorescence. All fluorescent molecules have a characteristic lifetime. When a short pulse of light is shined on a molecule, there is a brief delay before fluorescence. The background fluorescence in cells has a lifetime measured in nanoseconds -- billionths of a second.

Miller's lab will build a time-resolved microscope using sophisticated high-shutter-speed cameras to track proteins tagged with a different kind of reporter. The new probes will use lanthanides, the so-called rare-earth elements of the periodic table.

Europium and terbium are particularly promising, Miller said. Their fluorescence is different and more detectable than the commonly used tags.

"They give off multiple colors -- and what's particularly useful, technologically, is that it takes a longer time between when they're excited with a light pulse and the time they fluoresce," he said.

While the whole process happens in a fraction of a second, the lag helps distinguish lanthanide-tagged molecules after the glow of interfering cell fluorescence has faded.

"One purpose of our studies is to demonstrate that we can detect lanthanide reporter-tagged proteins at the single-molecule limit in living cells," said Miller. "That's never been done before."

Lanthanides can also be chemically incorporated into small molecules. Miller's lab aims to synthesize lanthanide reporters that can penetrate cell membranes and bind to proteins of interest with relative ease -- similar to the way drug molecules bind to their targets in cells.

"These tags are like 'smart bombs,'" said Miller. "You add them to cell cultures and they go into cells, find the protein you want to study, and bind with high affinity. It's a straightforward way to selectively label a protein and makes it detectable."

Miller hopes his research will give scientists a better tool to probe protein function within living cells.

Michael Sheetz, professor and chair of biological sciences at Columbia University, will collaborate with Miller by assessing the effects of lanthanide tags and time-resolved microscopy on cell health.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>