Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare Earth Elements Excite Protein Probes

28.08.2008
UIC biochemist Lawrence Miller has received a four-year, $1.16 million grant to develop a way to image single biological molecules in living cells by using lanthanide molecules to tag proteins being tracked

Seeing what's going on inside living cells at the molecular level may reveal biological mechanisms and ultimately lead to more effective medicines. While sophisticated microscopes allow scientists to take pictures of a single molecule, capturing images of single molecules in a living cell has been particularly challenging. The molecules must be "tagged" to made visible under the microscope.

Lawrence Miller, assistant professor of chemistry at the University of Illinois at Chicago, hopes to meet that challenge with the help of a four-year, $1.16 million grant from the National Institutes of Health.

"Over the past 10 years, there's been a revolution of sorts in studying protein function in living systems using microscopy to follow dynamic movements and localizations of particular protein molecules," said Miller.

To image a protein, it must be tagged with what is called a reporter -- another protein or even a small organic molecule with special optical properties, such as fluorescence. When fluorescent reporters are illuminated with light of a particular color, they give off a different color light. Fluorescence makes it possible to distinguish reporter-tagged proteins from untagged proteins in the cell.

Common fluorescent reporter molecules make it easy to see multiple copies of a tagged protein in a cell. However, it is difficult to observe a single copy because of other fluorescent molecules in cells. Light from these other fluorescent molecules generates background noise that can obscure the reporter-tagged protein of interest.

But there are ways to distinguish reporter molecules from background fluorescence. All fluorescent molecules have a characteristic lifetime. When a short pulse of light is shined on a molecule, there is a brief delay before fluorescence. The background fluorescence in cells has a lifetime measured in nanoseconds -- billionths of a second.

Miller's lab will build a time-resolved microscope using sophisticated high-shutter-speed cameras to track proteins tagged with a different kind of reporter. The new probes will use lanthanides, the so-called rare-earth elements of the periodic table.

Europium and terbium are particularly promising, Miller said. Their fluorescence is different and more detectable than the commonly used tags.

"They give off multiple colors -- and what's particularly useful, technologically, is that it takes a longer time between when they're excited with a light pulse and the time they fluoresce," he said.

While the whole process happens in a fraction of a second, the lag helps distinguish lanthanide-tagged molecules after the glow of interfering cell fluorescence has faded.

"One purpose of our studies is to demonstrate that we can detect lanthanide reporter-tagged proteins at the single-molecule limit in living cells," said Miller. "That's never been done before."

Lanthanides can also be chemically incorporated into small molecules. Miller's lab aims to synthesize lanthanide reporters that can penetrate cell membranes and bind to proteins of interest with relative ease -- similar to the way drug molecules bind to their targets in cells.

"These tags are like 'smart bombs,'" said Miller. "You add them to cell cultures and they go into cells, find the protein you want to study, and bind with high affinity. It's a straightforward way to selectively label a protein and makes it detectable."

Miller hopes his research will give scientists a better tool to probe protein function within living cells.

Michael Sheetz, professor and chair of biological sciences at Columbia University, will collaborate with Miller by assessing the effects of lanthanide tags and time-resolved microscopy on cell health.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>