Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare developmental disorder linked to tumor-suppressing protein, Stanford researchers find

04.08.2014

CHARGE, which affects 1 in 10,000 babies, is an acronym whose letters stand for some of the more common symptoms of the condition: coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness.

Originally, the researchers were examining the tumor-suppressive properties of the protein, called p53, not investigating developmental disorders. But when a mouse model developed a strange set of deficiencies, the researchers followed a trail of clues that led them to link p53 with CHARGE syndrome.

"It was a very big surprise and very intriguing," said Jeanine Van Nostrand, PhD, lead author of a paper describing the research and a former Stanford graduate student, now at The Salk Institute for Biological Studies. "P53 had never before been shown to have a role in CHARGE."

The paper will be published online Aug. 3 in Nature. The senior author is Laura Attardi, PhD, professor of radiation oncology and of genetics.

Cellular quality control regulator

The researchers originally created a mouse model that expressed a mutated form of the protein, known as p53, to investigate the behavior of p53 in suppressing tumors. Mice expressing only the mutated protein survived. But to their surprise, heterozygous mice, or those with one copy of the mutated p53 and one normal copy, developed symptoms of CHARGE and died in utero.

P53 is a cellular quality-control regulator. When it spots an ailing cell, it triggers other proteins to kill the cell or arrest its division. In a developing human or mouse, other proteins switch off p53 so it doesn't inadvertently kill important cells. The mutated form of p53 created by the researchers had a disabled off-switch, but it also couldn't communicate with other proteins to spark the cellular death. Therefore, a mouse containing only the mutated p53 survived to adulthood.

But when mice had one copy of a mutated p53 gene and one normal copy, the resultant proteins formed hybrids. These hybrid p53 proteins couldn't be turned off, but they retained the ability to trigger cellular death. Interestingly, these proteins only affected certain types of cells, causing the symptoms of CHARGE. The results suggest that p53 may play a role in other developmental disorders, Attardi said.

"It really reiterates how carefully p53 must be regulated," Attardi said. "It needs to be turned on at the right time and place. If it's not, it can cause damage."

CHARGE linked to gene mutation

The mechanisms of CHARGE syndrome remain a mystery, although it has been linked to a mutation in a gene called CHD7. Attardi's team examined the connection between p53 and CHD7. They discovered that the CHD7 protein can keep p53 turned off.

By linking p53 with CHARGE, this study elucidates molecular pathways that could be used to develop CHARGE therapies, said co-author Donna Martin, MD, PhD, associate professor of pediatrics and of human genetics at the University of Michigan Medical School and an expert on CHARGE.

###

Additional Stanford authors are former graduate students Colleen Brady, PhD, and Thomas Johnson, MD; postdoctoral scholar Heiyoun Jung, PhD; graduate students Daniel Fuentes, Chieh-Yu Lin and Chien-Jung Lin; Margaret Kozak, a former research assistant; Hannes Vogel, MD, professor of pathology and of pediatrics; Jonathan Bernstein, MD, assistant professor of pediatrics; and Joanna Wysocka, PhD, associate professor of chemical and systems biology and of developmental biology.

Other authors of the study are affiliated with Hôpital Necker-Enfants Malades in Paris, Université Paris Descartes, the Indiana University School of Medicine and the University of Michigan Medical School.

The study was supported by the National Science Foundation; the National Cancer Institute (grant 1F31CA167917); the National Institutes of Health (grants R01GM095555, R01DC009410, HL118087, HL121197 and R01CA140875); the American Heart Association; the March of Dimes Foundation; the American Cancer Society; and the Leukemia & Lymphoma Society.

Information about the Stanford's Department of Radiation Oncology and the Department of Genetics, which also supported the study, is available at http://radonc.stanford.edu and http://genetics.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Rosanne Spector at (650) 725-5374 (manishma@stanford.edu)

Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Rosanne Spector | Eurek Alert!

Further reports about: CHARGE Syndrome CHD7 Cancer Medicine death disorder heart defects p53 proteins symptoms

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>