Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare developmental disorder linked to tumor-suppressing protein, Stanford researchers find

04.08.2014

CHARGE, which affects 1 in 10,000 babies, is an acronym whose letters stand for some of the more common symptoms of the condition: coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness.

Originally, the researchers were examining the tumor-suppressive properties of the protein, called p53, not investigating developmental disorders. But when a mouse model developed a strange set of deficiencies, the researchers followed a trail of clues that led them to link p53 with CHARGE syndrome.

"It was a very big surprise and very intriguing," said Jeanine Van Nostrand, PhD, lead author of a paper describing the research and a former Stanford graduate student, now at The Salk Institute for Biological Studies. "P53 had never before been shown to have a role in CHARGE."

The paper will be published online Aug. 3 in Nature. The senior author is Laura Attardi, PhD, professor of radiation oncology and of genetics.

Cellular quality control regulator

The researchers originally created a mouse model that expressed a mutated form of the protein, known as p53, to investigate the behavior of p53 in suppressing tumors. Mice expressing only the mutated protein survived. But to their surprise, heterozygous mice, or those with one copy of the mutated p53 and one normal copy, developed symptoms of CHARGE and died in utero.

P53 is a cellular quality-control regulator. When it spots an ailing cell, it triggers other proteins to kill the cell or arrest its division. In a developing human or mouse, other proteins switch off p53 so it doesn't inadvertently kill important cells. The mutated form of p53 created by the researchers had a disabled off-switch, but it also couldn't communicate with other proteins to spark the cellular death. Therefore, a mouse containing only the mutated p53 survived to adulthood.

But when mice had one copy of a mutated p53 gene and one normal copy, the resultant proteins formed hybrids. These hybrid p53 proteins couldn't be turned off, but they retained the ability to trigger cellular death. Interestingly, these proteins only affected certain types of cells, causing the symptoms of CHARGE. The results suggest that p53 may play a role in other developmental disorders, Attardi said.

"It really reiterates how carefully p53 must be regulated," Attardi said. "It needs to be turned on at the right time and place. If it's not, it can cause damage."

CHARGE linked to gene mutation

The mechanisms of CHARGE syndrome remain a mystery, although it has been linked to a mutation in a gene called CHD7. Attardi's team examined the connection between p53 and CHD7. They discovered that the CHD7 protein can keep p53 turned off.

By linking p53 with CHARGE, this study elucidates molecular pathways that could be used to develop CHARGE therapies, said co-author Donna Martin, MD, PhD, associate professor of pediatrics and of human genetics at the University of Michigan Medical School and an expert on CHARGE.

###

Additional Stanford authors are former graduate students Colleen Brady, PhD, and Thomas Johnson, MD; postdoctoral scholar Heiyoun Jung, PhD; graduate students Daniel Fuentes, Chieh-Yu Lin and Chien-Jung Lin; Margaret Kozak, a former research assistant; Hannes Vogel, MD, professor of pathology and of pediatrics; Jonathan Bernstein, MD, assistant professor of pediatrics; and Joanna Wysocka, PhD, associate professor of chemical and systems biology and of developmental biology.

Other authors of the study are affiliated with Hôpital Necker-Enfants Malades in Paris, Université Paris Descartes, the Indiana University School of Medicine and the University of Michigan Medical School.

The study was supported by the National Science Foundation; the National Cancer Institute (grant 1F31CA167917); the National Institutes of Health (grants R01GM095555, R01DC009410, HL118087, HL121197 and R01CA140875); the American Heart Association; the March of Dimes Foundation; the American Cancer Society; and the Leukemia & Lymphoma Society.

Information about the Stanford's Department of Radiation Oncology and the Department of Genetics, which also supported the study, is available at http://radonc.stanford.edu and http://genetics.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Rosanne Spector at (650) 725-5374 (manishma@stanford.edu)

Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Rosanne Spector | Eurek Alert!

Further reports about: CHARGE Syndrome CHD7 Cancer Medicine death disorder heart defects p53 proteins symptoms

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>