Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare deep-sea starfish stuck in juvenile body plan

03.05.2011
Janies applies sequencing, supercomputing to correct erroneous classification

A team of scientists has combined embryological observations, genetic sequencing, and supercomputing to determine that a group of small disk-shaped animals that were once thought to represent a new class of animals are actually starfish that have lost the large star-shaped, adult body from their life cycle.

In a paper for the journal Systematic Biology (sysbio.oxfordjournals.org), Daniel Janies, Ph.D., a computational biologist in the department of Biomedical Informatics at The Ohio State University (OSU), leveraged computer systems at the Ohio Supercomputer Center (OSC) to help support his contention that class-level status of Xyloplax does not reflect their evolutionary history.

“Although Xyloplax does not represent a new class, it an even more interesting animal now because it represents a rare example of how natural selection can shape the whole the life cycle,” he explained. “By omitting the large adult stage, Xylopax found how to make a living in the nooks and crannies of sunken timbers on the deep-sea floor.”

Janies collaborated on the paper with co-authors Janet R. Voight, Ph.D., in the department of Zoology at the Field Museum of Natural History in Chicago, and Marymegan Daly, Ph.D., in the department of Evolution, Ecology and Organismal Biology at Ohio State.

Janies and his colleagues are examining echinoderms – starfish, sea urchins and their close relatives – as part of a study for the United States’ National Science Foundation’s Assembling the Tree of Life project. Several OSU scientists, including Janies and Daly, have won these grants, typically valued at $3 million over five years, to better understand the interrelationships of all forms of life (http://echinotol.org).

As tree-of-life analyses are computationally difficult, the current project is enabled by the computational muscle of OSC’s flagship system, the 9,500-node IBM 1350 Opteron “Glenn Cluster.”

“Last year, OSC deployed a $4 million expansion to the Glenn Cluster with a specific focus on supporting researchers, like Drs. Janies and Daly, in Ohio’s growing biosciences sector,” said Ashok Krishnamurthy, interim co-executive director of OSC. “The center provides a world-class computing environment for amazing bioscience research projects at places like OSU’s Department of Biomedical Informatics, the Research Institute at Nationwide Children’s Hospital and the Cleveland Clinic.”

The researchers examined both genetic and anatomical data to support their hypothesis, comparing Xyloplax with a total of 86 species representing major lineages of the five living classes of echinoderms (sea cucumbers, sea urchins, starfish, brittle stars, and sea lilies). For accurate comparisons, they applied several analytical methods to search for the shared mutations and changes in anatomy among the lineages.

The results describe the relationships in a phylogenetic tree representing the best-supported hypothesis on how Xyloplax evolved from other echinoderms. Phylogenetics is the study of the evolutionary relationships and changes among various biological species as they evolve from a common ancestor.

Prior to this study, molecular investigations of Xyloplax were limited, because specimens in two early collections in the 1980s were fixed in a solution which degrades DNA. Voight recently collected specimens of Xyloplax in the northeastern Pacific Ocean and carefully preserved them in ethanol. From these specimens, Daly was able to sequence several genes for Xyloplax. The newer specimens of Xyloplax also included several brooding females containing embryos, providing Janies with an unprecedented view of the creature’s early development.

Janies and colleagues theorize that Xyloplax differs from other starfish species because it is progenetic – that is, it has a rare, truncated life cycle that leaves the mature organism with features retained from its juvenile stages. For example, the arms of a starfish typically grow axially, like spokes of a wheel, as they develop from juveniles to adults, whereas Xyloplax grows along its circumference, like the wheel itself, and never develops arms.

“Irrespective of method or data sampling scheme, our results show that Xyloplax evolved from within starfish,” Janies concluded. “Xyloplax is just a little starfish that has a strange body plan and habitat, so strange that many could not recognize it as a starfish until we unlocked its genome and development.”

The Systematic Biology article is available online at:
http://sysbio.oxfordjournals.org/cgi/content/full/syr044? ijkey=JFlq6Bz3WkOSNqH&keytype=ref

The Ohio Supercomputer Center (OSC) addresses the rising computational demands of academic and industrial research communities by providing a robust shared infrastructure and proven expertise in advanced modeling, simulation and analysis. OSC empowers scientists with the vital resources essential to make extraordinary discoveries and innovations, partners with businesses and industry to leverage computational science as a competitive force in the global knowledge economy, and leads efforts to equip the workforce with the key technology skills required to secure 21st century jobs. For more, visit www.osc.edu.

Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>