Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare cells regulate immune responses; May offer novel treatment for autoimmune diseases

15.10.2012
Reproducing a rare type of B cell in the laboratory and infusing it back into the body may provide an effective treatment for severe autoimmune diseases such as multiple sclerosis or rheumatoid arthritis, according to researchers at Duke University Medical Center.

The findings, which were demonstrated in mice, highlight the unique properties of a subset of B cells that normally controls immune responses and limits autoimmunity, in which an organism mistakenly attacks its own healthy tissue. The work appears Oct. 14, 2012, in the journal Nature.

B cells are the component of the immune system that creates antibodies, which fight pathogens like bacteria and viruses. However, a small subset of B cells, called regulatory B cells, works to suppress immune responses. These B cells are characterized by a cell-signaling protein called interleukin-10 (IL-10), giving these regulatory B cells the name B10 cells.

While B10 cells are small in number, they are important for controlling inflammation and autoimmunity. B10 cells can also limit normal immune responses during infections, reducing inadvertent damage to healthy body tissue.

"Regulatory B cells are a fairly new finding that we're just beginning to understand," said Thomas F. Tedder, PhD, professor of immunology at Duke and study author. "B10 cells are important because they make sure an immune response doesn't get carried away, resulting in autoimmunity or pathology. This study shows for the first time that there is a highly controlled process that determines when and where these cells produce IL-10."

Tedder and his colleagues studied the process of IL-10 production in the B10 cells of mice. Creating IL-10 requires physical interactions between B10 cells and T cells, which play a role in turning on the immune system.

The researchers found that B10 cells only respond to very specific antigens. Recognizing these antigens drives the function of B10 cells, causing them to turn off certain T cells when they bind the same antigen to prevent them from harming healthy tissue.

With this understanding of B10 cells, researchers set out to learn whether B10 cells could be harnessed as a cellular therapy, given their ability to regulate immune responses and autoimmunity.

"Since B10 cells are extremely rare, it was important that we find a feasible solution to reproduce these cells outside the body to make them available," Tedder said.

The researchers learned that the B10 cells could be isolated from the body and would maintain their ability to regulate immune responses. Moreover, they could be reproduced in large numbers.

"Normal B cells usually die quickly when cultured, but we have learned how to expand their numbers by about 25,000-fold. However, the rare B10 cells in the cultures expand their numbers by four-million-fold, which is remarkable. Now, we can take the B10 cells from one mouse and increase them in culture over nine days to where we can effectively treat 8,000 mice with autoimmune disease," said Tedder.

When a small amount of B10 cells were introduced into mice with multiple sclerosis-like autoimmune disease, their symptoms were significantly reduced, essentially turning off the disease.

"B10 cells will only shut off what they are programmed to shut off. If you have rheumatoid arthritis, you would want cells that would only go after your rheumatoid arthritis," continued Tedder. "This research shows that we may have the potential to unharness regulatory cells, make millions of copies, and introduce them back into someone with autoimmune disease to shut down the disease. This may also treat transplanted organ rejection."

Additional research is needed to learn how to expand human B10 cells and determine how B10 cells behave in humans, building on the study's insights into the mechanisms behind their function and autoimmunity.

"Autoimmune diseases are very complicated, so creating a single therapy that allows us to go after multiple disease targets without causing immunosuppression has proven to be difficult." Tedder said. "Here, we're hoping to take what Mother Nature has already created, improve on it by expanding the cells outside of the body, and then put them back in to let Mother Nature go back to work."

In addition to Tedder, Duke study authors include Ayumi Yoshizaki, Tomomitsu Miyagaki, David J. DiLillo, Takashi Matsushita, Mayuka Horikawa, Evgueni I. Kountikov, and Jonathan C. Poe. Rosanne Spolski and Warren J. Leonard contributed to this study from the National Heart, Lung, and Blood Institute, National Institutes of Health.

The research was supported by grants from the National Institutes of Health (AI56363 and AI057157), the Lymphoma Research Foundation, and the Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH.

Rachel Bloch | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>