Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid venom evolution in pit vipers may be defensive

19.07.2011
Marsupials that prey on venomous snakes also evolve rapidly

Research published recently in PLoS One delivers new insight about rapid toxin evolution in venomous snakes: pitvipers such as rattlesnakes may be engaged in an arms race with opossums, a group of snake-eating American marsupials.

Although some mammals have long been known to eat venomous snakes, this fact has not been factored into previous explanations for the rapid evolution of snake venom. Instead, snake venom is usually seen as a feeding, or trophic, adaptation. But new molecular research on snake-eating opossums by researchers affiliated with the American Museum of Natural History suggests that predators factor into the rapid evolution of snake venom.

"Snake venom toxins evolve incredibly rapidly," says Robert Voss, curator in the Department of Mammalogy at the American Museum of Natural History. "Most herpetologists interpret this as evidence that venom in snakes evolves because of interactions with their prey, but if that were true you would see equally rapid evolution in toxin-targeted molecules of prey species, which has not yet been seen. What we've found is that a venom-targeted protein is evolving rapidly in mammals that eat snakes. That suggests that venom has a defensive as well as a trophic role."

Several groups of mammals are known for their ability to eat venomous snakes, including hedgehogs, mongooses, and some opossums. Opossums, which belong to the marsupial family Didelphidae, consist of about one hundred known and several dozen undescribed species. Most of these opossums live in Central and South America, although there is one representative in the north that is familiar to those who spend time outside at night: the Virginia opossum.

Some didelphids, including the Virginia opossum, are known to eat rattlesnakes, copperheads, and some species of tropical pitvipers known as lanceheads. All of these pitvipers have venom containing dozens of highly toxic compounds, including many that attack blood proteins, causing massive internal hemorrhaging in nonresistant warm-blooded prey species, mainly rodents and birds.

The new research came out of a previous phylogenetic study of marsupials, published as a Bulletin of the American Museum of Natural History, that suggested unusually rapid evolution in one gene among a group of snake-eating opossums. The rapidly evolving gene codes for von Willebrand's factor, an important blood-clotting protein that is known to be the target of several snake-venom toxins. The association of rapid evolution in a venom-targeted gene among just those opossums known to eat pitvipers was the essential clue that prompted further study.

"This finding took us by surprise," says Sharon Jansa, associate professor in the Department of Ecology, Evolution and Behavior at the University of Minnesota and a Museum research associate. "We sequenced several genes—including the one that codes for von Willebrand Factor (vWF)—to use in a study of opossum phylogeny. Once we started to analyze the data, vWF was a real outlier. It was evolving much more rapidly than expected in a group of opossums that also, as it turns out, are resistant to pitviper venom."

The recently published research demonstrates that the rate of replacement substitutions (nucleotide changes that result in amino-acid changes) is much higher than the rate of silent substitutions (nucleotide changes that have no effect on the protein) in the von Willebrand Factor gene among pitviper-eating opossums. Typically, high rates of replacement substitutions means that the gene is under strong, sustained natural selection. That only happens in a few evolutionary circumstances.

"Most nucleotide substitutions have little or no effect on protein function, but that doesn't seem to be the case with vWF in these venom-resistant opossums," says Jansa. "The specific amino acids in vWF that interact with toxin proteins show unexpectedly high rates of replacement substitutions. These substitutions undoubtedly affect protein function, suggesting that the vWF protein can no longer be attacked by these snake toxins."

"It is so uncommon to find genes under strong positive selection, that the exceptions are really interesting and often conform to one evolutionary circumstance when two organisms are coevolving with each other," says Voss. "We've known for years that venom genes evolve rapidly in snakes, but the partner in this arms race was unknown until now. Opossums eat snakes because they can."

The National Science Foundation funded this research.

Michael Walker | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>