Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid and Reliable Pharmaceutical Production

18.06.2012
Medication can be more quickly and efficiently produced with a new version of the Sipat software.

By contrast to traditional batch methods of production, where medications are produced one step at a time, Sipat makes continuous production possible while incorporating constant quality control.



This method of production makes it possible to save up to 20 percent on costs and to cut production time from up to two months down to about ten days. Siemens will present the new version of Sipat at Achema, the world's largest chemical industry trade fair, which will be held in Frankfurt from June 18 to 22, 2012.

Manufacturing pharmaceuticals by means of batch production methods is time consuming, cost intensive, and uses a lot of energy. One batch or "charge" of products, such as tablets or capsules, moves through the production process as a unit. The raw material must be granulated, dried, pulverized, mixed, and pressed.

The process is repeatedly halted between steps so that samples can be taken. Only when it is certain that the product is completely homogenized or the active ingredient concentration has the necessary quality is the production process continued. As a result, production can take several weeks.

If the quality of the preliminary product is not up to standard, the charge is discarded. This manufacturing technique also does not make optimal use of the production facilities.

A continuous production process is less expensive, more efficient, and uses less raw materials and energy. The automation experts at Siemens have developed the Sipat software in collaboration with large pharmaceutical companies and plant manufacturers. It is the core of a continuous production system. Sipat continuously polls process data for information about moisture content, temperature, density or grain size distribution, etc.

By correlating this information, Sipat can predict the quality of any given tablet at any point in the process. If the data from the running production threatens to exceed tolerance limits, the process can be immediately adjusted. This real-time release makes it possible to achieve a production time of about ten days.

Apart from that, continuous production makes it possible to use production facilities much more efficiently. Plant manufacturers can simply integrate the newest version V4 of Sipat into their systems.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>