Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid and Reliable Pharmaceutical Production

18.06.2012
Medication can be more quickly and efficiently produced with a new version of the Sipat software.

By contrast to traditional batch methods of production, where medications are produced one step at a time, Sipat makes continuous production possible while incorporating constant quality control.



This method of production makes it possible to save up to 20 percent on costs and to cut production time from up to two months down to about ten days. Siemens will present the new version of Sipat at Achema, the world's largest chemical industry trade fair, which will be held in Frankfurt from June 18 to 22, 2012.

Manufacturing pharmaceuticals by means of batch production methods is time consuming, cost intensive, and uses a lot of energy. One batch or "charge" of products, such as tablets or capsules, moves through the production process as a unit. The raw material must be granulated, dried, pulverized, mixed, and pressed.

The process is repeatedly halted between steps so that samples can be taken. Only when it is certain that the product is completely homogenized or the active ingredient concentration has the necessary quality is the production process continued. As a result, production can take several weeks.

If the quality of the preliminary product is not up to standard, the charge is discarded. This manufacturing technique also does not make optimal use of the production facilities.

A continuous production process is less expensive, more efficient, and uses less raw materials and energy. The automation experts at Siemens have developed the Sipat software in collaboration with large pharmaceutical companies and plant manufacturers. It is the core of a continuous production system. Sipat continuously polls process data for information about moisture content, temperature, density or grain size distribution, etc.

By correlating this information, Sipat can predict the quality of any given tablet at any point in the process. If the data from the running production threatens to exceed tolerance limits, the process can be immediately adjusted. This real-time release makes it possible to achieve a production time of about ten days.

Apart from that, continuous production makes it possible to use production facilities much more efficiently. Plant manufacturers can simply integrate the newest version V4 of Sipat into their systems.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>