Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rapid and Reliable Pharmaceutical Production

Medication can be more quickly and efficiently produced with a new version of the Sipat software.

By contrast to traditional batch methods of production, where medications are produced one step at a time, Sipat makes continuous production possible while incorporating constant quality control.

This method of production makes it possible to save up to 20 percent on costs and to cut production time from up to two months down to about ten days. Siemens will present the new version of Sipat at Achema, the world's largest chemical industry trade fair, which will be held in Frankfurt from June 18 to 22, 2012.

Manufacturing pharmaceuticals by means of batch production methods is time consuming, cost intensive, and uses a lot of energy. One batch or "charge" of products, such as tablets or capsules, moves through the production process as a unit. The raw material must be granulated, dried, pulverized, mixed, and pressed.

The process is repeatedly halted between steps so that samples can be taken. Only when it is certain that the product is completely homogenized or the active ingredient concentration has the necessary quality is the production process continued. As a result, production can take several weeks.

If the quality of the preliminary product is not up to standard, the charge is discarded. This manufacturing technique also does not make optimal use of the production facilities.

A continuous production process is less expensive, more efficient, and uses less raw materials and energy. The automation experts at Siemens have developed the Sipat software in collaboration with large pharmaceutical companies and plant manufacturers. It is the core of a continuous production system. Sipat continuously polls process data for information about moisture content, temperature, density or grain size distribution, etc.

By correlating this information, Sipat can predict the quality of any given tablet at any point in the process. If the data from the running production threatens to exceed tolerance limits, the process can be immediately adjusted. This real-time release makes it possible to achieve a production time of about ten days.

Apart from that, continuous production makes it possible to use production facilities much more efficiently. Plant manufacturers can simply integrate the newest version V4 of Sipat into their systems.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>