Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid procedure for the exploration of molecules

13.02.2012
Rapid procedure for the exploration of chemical compound space unites quantum chemistry with artificial intelligence

By combining quantum chemistry with artificial intelligence (Machine Learning), researchers at the Institute for Pure and Applied Mathematics at the University of California, Los Angeles achieved a scientific breakthrough expected to aid in exploring chemical compound space, i.e. the virtual space populated by all possible chemical compounds.

The interdisciplinary team from the Technische Universität Berlin (Germany), the Fritz-Haber Institute of the Max-Planck Society (Germany), and the Argonne Leadership Computing Facility (United States) dramatically increased the speed of calculating energies of small molecules with quantum chemical accuracy.

Quantum chemical methods permit scientists to calculate molecular properties on a computer from first principles (i.e. without having to conduct any experiments) — they are necessary for many chemical applications such as catalysis, or the discovery of novel materials. Previously, such calculations demanded intensive computational resources.

Machine Learning, on the other hand, generates predictive models based on examples. While common in daily life, such as in Google's internet search engines or Amazon's book suggestions, it is also used in scientific domains, such as genetic research or brain computer interfaces. When applied to quantum chemistry, thousands of quantum chemical reference energies have been calculated in order to "learn" a molecular model. The resulting Machine permits the prediction of molecular properties with comparable accuracy within milliseconds, instead of hours. Such speed-up paves the way for highly accurate calculations of unprecedentedly many molecules.

Originally published in:
Matthias Rupp, Alexandre Tkatschenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
Physical Review Letters 108, 058301 (2012) | doi:10.1103/PhysRevLett.108.058301

For further information please contact: Prof. Dr. Klaus-Robert Müller, TU Berlin, Machine Learning Group, Tel.: 030/314-78620, E-Mail: klaus-robert.mueller@tu-berlin.de and Dr. Alexandre Tkatchenko, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Tel.: 030/8413-5737, E-Mail: tkatchen@fhi-berlin.mpg.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>