Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid procedure for the exploration of molecules

13.02.2012
Rapid procedure for the exploration of chemical compound space unites quantum chemistry with artificial intelligence

By combining quantum chemistry with artificial intelligence (Machine Learning), researchers at the Institute for Pure and Applied Mathematics at the University of California, Los Angeles achieved a scientific breakthrough expected to aid in exploring chemical compound space, i.e. the virtual space populated by all possible chemical compounds.

The interdisciplinary team from the Technische Universität Berlin (Germany), the Fritz-Haber Institute of the Max-Planck Society (Germany), and the Argonne Leadership Computing Facility (United States) dramatically increased the speed of calculating energies of small molecules with quantum chemical accuracy.

Quantum chemical methods permit scientists to calculate molecular properties on a computer from first principles (i.e. without having to conduct any experiments) — they are necessary for many chemical applications such as catalysis, or the discovery of novel materials. Previously, such calculations demanded intensive computational resources.

Machine Learning, on the other hand, generates predictive models based on examples. While common in daily life, such as in Google's internet search engines or Amazon's book suggestions, it is also used in scientific domains, such as genetic research or brain computer interfaces. When applied to quantum chemistry, thousands of quantum chemical reference energies have been calculated in order to "learn" a molecular model. The resulting Machine permits the prediction of molecular properties with comparable accuracy within milliseconds, instead of hours. Such speed-up paves the way for highly accurate calculations of unprecedentedly many molecules.

Originally published in:
Matthias Rupp, Alexandre Tkatschenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
Physical Review Letters 108, 058301 (2012) | doi:10.1103/PhysRevLett.108.058301

For further information please contact: Prof. Dr. Klaus-Robert Müller, TU Berlin, Machine Learning Group, Tel.: 030/314-78620, E-Mail: klaus-robert.mueller@tu-berlin.de and Dr. Alexandre Tkatchenko, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Tel.: 030/8413-5737, E-Mail: tkatchen@fhi-berlin.mpg.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>