Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid colorimetric detection technology enables illegal cooking oils with no place to hide

01.07.2013
In recent years, illegal cooking oil incident led to the serious food safety risks and the negative social repercussions. Professor HE Yujian and his group from College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences establish two rapid and convenient colorimetric detections of illegal cooking oils based on phase transfer technology.

This work could be helpful for the rapid and on-site detection of illegal cooking oil. Their work, entitled "Rapid colorimetric detection of illegal cooking oils based on phase transfer technology", will be published on SCIENCE CHINA Chemistry, 2013i7j.

The illegal cooking oil includes the refining of the waste oil from restaurant, the repeatedly used oil and the waste animal fats. Because illegal cooking oil may contain toxic polymer, peroxide and so on, is dangerous to human health. The most common clinical symptoms of poisoning include headache, vomiting and diarrhea abdominal pain. Recently years, because the illegal cooking oil inflows into the family kitchens, it led to the serious food safety risks in China. The administration from the government such as monitoring the purchase records and granting the administrative license can be used to control the problem of illegal cooking oil; however the rapid and on-site detection of illegal cooking oil is still necessary and urgent.

Professor HE Yujian, associate professor ZHAO Hong, doctoral students YUAN Longfei and ZHOU Ying et al., from University of Chinese Academy of Sciences establish two rapid and convenient colorimetric detections of illegal cooking oils based on phase transfer technology. The copper ions and the cationic gold nanoparticles protected by poly (diallyl dimethylammonium) chloride (PDDA) were used as the recognition probes. And the illegal cooking oil could be detected by naked-eye (as shown in the Figure 1). The results showed that qualified cooking oil mixed with 2.8% of the illegal cooking oil could be detected, and more than 5% of the illegal cooking oil could be accurately detected by naked-eye. These methods were applied in blind test for total of 235 samples; the results showed that the accurate rates of the blind tests were 95.7%.

Compared with the traditional methods, this method is a cost-effective process, and allowed rapid and simple colorimetric detection of illegal cooking oils without omplex pre-treatment. The work could provide beneficial methods for the rapid on-site detection of illegal cooking oil. It has a favorable application potential in civilian fields because of its high accuracy, simple and low cost. These research findings have applied for national patent.

In addition, Professor HE Yujian and his group have established various detections of illegal cooking oils based on NMR, GC, HPLC and MALDI-TOF-MS technology since 2012. These works have been published in professional journal of analytical chemistry and applied for national patents.

See the article:

YUAN L F, ZHOU Y, HE P, CAI B T, XU X L, LIU Q J, ZHONG W K, LI Q L, ZHAO H, HE Y J. Rapid colorimetric detection of illegal cooking oils based on phase transfer technology. SCIENCE CHINA Chemistry, 2013i7j, doi: 10.1360/032012-459

http://chem.scichina.com:8081/sciB/CN/abstract/abstract510311.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

HE Yujian | EurekAlert!
Further information:
http://www.scichina.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>