Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid burst of flowering plants set stage for other species

10.02.2009
A new University of Florida study based on DNA analysis from living flowering plants shows that the ancestors of most modern trees diversified extremely rapidly 90 million years ago, ultimately leading to the formation of forests that supported similar evolutionary bursts in animals and other plants.

This burst of speciation over a 5-million-year span was one of three major radiations of flowering plants, known as angiosperms. The study focuses on diversification in the rosid clade, a group with a common ancestor that now accounts for one-third of the world's flowering plants.

The forests that resulted provided the habitat that supported later evolutionary diversifications for amphibians, ants, placental mammals and ferns.

"Shortly after the angiosperm-dominated forests diversified, we see this amazing diversification in other lineages, so they basically set the habitat for all kinds of new things to arise," said Pamela Soltis, study co-author and curator of molecular systematics and evolutionary genetics at UF's Florida Museum of Natural History. "Associated with some of the subsequent radiations is even the diversification of the primates."

The study appearing online in next week's Proceedings of the National Academy of Sciences is the first to show the evolutionary relationships of these plants and provide evidence for their rapid emergence and diversification.

Because the diversification happened so quickly, at least in evolutionary terms, molecular methods were needed to sort out the branches of the rosid clade's phylogenetic tree, a sort of family tree based on genetic relationships. Only after sequencing many thousands of DNA base pairs are genetic researchers able to tease apart the branches and better understand how plant species evolved.

Often, when scientists discuss the rapid radiation of flowering plants, they talk as if there had been one massive burst of early diversification, said Doug Soltis, co-author and chair of UF's botany department.

"I think one thing that becomes very clear from our phylogenetic trees when you look at them closely is that it's not just one big explosion of species within the flowering plants," Doug Soltis said. "There's a series of explosions."

The rosid clade's diversification is one of at least three bursts in the early evolution of flowering plants. More than 300,000 species of angiosperms exist, classified into an estimated 15,000 genera and more than 400 families. Understanding how these plants are related is a large undertaking that could help ecologists better understand which species are more vulnerable to environmental factors such as climate change.

"We really need to know on a finer scale how these species are related and on different parts of the planet how members of the clade are related," Doug Soltis said. "That's where the action is going to be in terms of how this clade responds to climate change. How members of this large clade respond is really going to determine the fate of most of the organisms on the planet."

The study's authors sequenced 25,000 base pairs of DNA and sampled a broad range of 104 species from the rosid clade. Using a phylogenetic tree to date the diversification of lineages requires the use of a molecular clock, which calibrates the degree of change that has occurred over time.

"You can assume that over time DNA sequences accumulate change, and things that are more similar to each other in general would have diverged from each other more recently than things that are more different," Pam Soltis said.

But different genes have different rates of evolution, as do different clades. To compensate, the study used algorithms that accommodate the different rates. Rosid fossils selected by co-author Steven Manchester, the museum's curator of paleobotany, were used to help calibrate that clock by setting minimum ages for member species.

Paul Ramey | EurekAlert!
Further information:
http://www.ufl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>