Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid burst of flowering plants set stage for other species

10.02.2009
A new University of Florida study based on DNA analysis from living flowering plants shows that the ancestors of most modern trees diversified extremely rapidly 90 million years ago, ultimately leading to the formation of forests that supported similar evolutionary bursts in animals and other plants.

This burst of speciation over a 5-million-year span was one of three major radiations of flowering plants, known as angiosperms. The study focuses on diversification in the rosid clade, a group with a common ancestor that now accounts for one-third of the world's flowering plants.

The forests that resulted provided the habitat that supported later evolutionary diversifications for amphibians, ants, placental mammals and ferns.

"Shortly after the angiosperm-dominated forests diversified, we see this amazing diversification in other lineages, so they basically set the habitat for all kinds of new things to arise," said Pamela Soltis, study co-author and curator of molecular systematics and evolutionary genetics at UF's Florida Museum of Natural History. "Associated with some of the subsequent radiations is even the diversification of the primates."

The study appearing online in next week's Proceedings of the National Academy of Sciences is the first to show the evolutionary relationships of these plants and provide evidence for their rapid emergence and diversification.

Because the diversification happened so quickly, at least in evolutionary terms, molecular methods were needed to sort out the branches of the rosid clade's phylogenetic tree, a sort of family tree based on genetic relationships. Only after sequencing many thousands of DNA base pairs are genetic researchers able to tease apart the branches and better understand how plant species evolved.

Often, when scientists discuss the rapid radiation of flowering plants, they talk as if there had been one massive burst of early diversification, said Doug Soltis, co-author and chair of UF's botany department.

"I think one thing that becomes very clear from our phylogenetic trees when you look at them closely is that it's not just one big explosion of species within the flowering plants," Doug Soltis said. "There's a series of explosions."

The rosid clade's diversification is one of at least three bursts in the early evolution of flowering plants. More than 300,000 species of angiosperms exist, classified into an estimated 15,000 genera and more than 400 families. Understanding how these plants are related is a large undertaking that could help ecologists better understand which species are more vulnerable to environmental factors such as climate change.

"We really need to know on a finer scale how these species are related and on different parts of the planet how members of the clade are related," Doug Soltis said. "That's where the action is going to be in terms of how this clade responds to climate change. How members of this large clade respond is really going to determine the fate of most of the organisms on the planet."

The study's authors sequenced 25,000 base pairs of DNA and sampled a broad range of 104 species from the rosid clade. Using a phylogenetic tree to date the diversification of lineages requires the use of a molecular clock, which calibrates the degree of change that has occurred over time.

"You can assume that over time DNA sequences accumulate change, and things that are more similar to each other in general would have diverged from each other more recently than things that are more different," Pam Soltis said.

But different genes have different rates of evolution, as do different clades. To compensate, the study used algorithms that accommodate the different rates. Rosid fossils selected by co-author Steven Manchester, the museum's curator of paleobotany, were used to help calibrate that clock by setting minimum ages for member species.

Paul Ramey | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>