Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid burst of flowering plants set stage for other species

10.02.2009
A new University of Florida study based on DNA analysis from living flowering plants shows that the ancestors of most modern trees diversified extremely rapidly 90 million years ago, ultimately leading to the formation of forests that supported similar evolutionary bursts in animals and other plants.

This burst of speciation over a 5-million-year span was one of three major radiations of flowering plants, known as angiosperms. The study focuses on diversification in the rosid clade, a group with a common ancestor that now accounts for one-third of the world's flowering plants.

The forests that resulted provided the habitat that supported later evolutionary diversifications for amphibians, ants, placental mammals and ferns.

"Shortly after the angiosperm-dominated forests diversified, we see this amazing diversification in other lineages, so they basically set the habitat for all kinds of new things to arise," said Pamela Soltis, study co-author and curator of molecular systematics and evolutionary genetics at UF's Florida Museum of Natural History. "Associated with some of the subsequent radiations is even the diversification of the primates."

The study appearing online in next week's Proceedings of the National Academy of Sciences is the first to show the evolutionary relationships of these plants and provide evidence for their rapid emergence and diversification.

Because the diversification happened so quickly, at least in evolutionary terms, molecular methods were needed to sort out the branches of the rosid clade's phylogenetic tree, a sort of family tree based on genetic relationships. Only after sequencing many thousands of DNA base pairs are genetic researchers able to tease apart the branches and better understand how plant species evolved.

Often, when scientists discuss the rapid radiation of flowering plants, they talk as if there had been one massive burst of early diversification, said Doug Soltis, co-author and chair of UF's botany department.

"I think one thing that becomes very clear from our phylogenetic trees when you look at them closely is that it's not just one big explosion of species within the flowering plants," Doug Soltis said. "There's a series of explosions."

The rosid clade's diversification is one of at least three bursts in the early evolution of flowering plants. More than 300,000 species of angiosperms exist, classified into an estimated 15,000 genera and more than 400 families. Understanding how these plants are related is a large undertaking that could help ecologists better understand which species are more vulnerable to environmental factors such as climate change.

"We really need to know on a finer scale how these species are related and on different parts of the planet how members of the clade are related," Doug Soltis said. "That's where the action is going to be in terms of how this clade responds to climate change. How members of this large clade respond is really going to determine the fate of most of the organisms on the planet."

The study's authors sequenced 25,000 base pairs of DNA and sampled a broad range of 104 species from the rosid clade. Using a phylogenetic tree to date the diversification of lineages requires the use of a molecular clock, which calibrates the degree of change that has occurred over time.

"You can assume that over time DNA sequences accumulate change, and things that are more similar to each other in general would have diverged from each other more recently than things that are more different," Pam Soltis said.

But different genes have different rates of evolution, as do different clades. To compensate, the study used algorithms that accommodate the different rates. Rosid fossils selected by co-author Steven Manchester, the museum's curator of paleobotany, were used to help calibrate that clock by setting minimum ages for member species.

Paul Ramey | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>