Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rampant helper syndrome

06.07.2009
Methane-producing molecule can also repair DNA

The Archaea are single-celled organisms and a domain unto themselves, quite apart from the so called eukaryotes, being bacteria and higher organisms. Many species live under extreme conditions, and carry out unique biochemical processes shared neither with bacteria nor with eukaryotes.

Methanogenic archaeans, for example, can produce methane gas out of carbon dioxide and hydrogen. The underlying chemical reaction, a reduction, involves the cofactor known as F0 or F420 which is the tiny molecule deazaflavin. It has previously been found only in methanogenic bacteria, and has accordingly been considered the signature molecule for those species.

A research group working with Professor Thomas Carell, however, has now shown that this cofactor is also common in eukaryotes, where it performs an entirely different function: deazaflavin is involved in DNA repair processes. (PNAS Early Edition online, 1 July 2009)

Catalysts assist in chemical reactions without undergoing any alteration of their own. In the cells of living organisms, proteins perform this important function. They carry out the metabolism fundamental to all living processes. Proteins are instrumental in cellular respiration, they for instance reduce oxygen to water and oxidize food into carbon dioxide. This releases the energy that makes life possible at all. Proteins cannot perform these functions on their own. They depend on small helper molecules.

Such molecules are stored inside special pockets in the proteins and carry out essential metabolic functions. The living organism itself produces many of these helpers. Others – like vitamins – must be obtained from food. Severe vitamin deficiencies are a harsh reminder of how essential these molecules are.

Methanogenic bacteria have quite an exceptional task to accomplish: They have to produce methane. In terms of chemistry, this is no mean feat. Methane production is currently one of the most hotly pursued goals for the purposes of renewable energy. It is also a serious greenhouse gas.

Enzymatic methane production involves the tiny molecule deazaflavin, known as cofactor F0 or cofactor F420. This cofactor is stored inside special proteins of methanogenic bacteria, and is essential for methane biosynthesis. Cofactor F0/F420 is a small molecule that, until now, has only been found in methanogenic bacteria. It is regarded as the signature molecule for such species.

"We have now shown that this picture is not entirely true," Carell says. "This cofactor is significantly more widespread in the biosphere than previously assumed. Most importantly, it also occurs in higher organisms, the so-called eukaryotes. But in these, it performs a completely different task." As the researchers were able to demonstrate, the cofactor is involved in DNA repair processes. Specifically, repair of UV damage to the DNA molecule.

Plants and many other organisms that are exposed to intense sunlight must cope with an enormous degree of damage to their genes. To repair those mutations, they need the help of complex enzymes. These photolyases in turn require cofactor FAD – aka vitamin B2 – to accomplish this function. It has long been suspected that these crucial enzymes require yet another cofactor to provide the energy that DNA repair requires.

"We have now shown that, in many organisms, this cofactor is F0/F420," Carell reports. "This molecule has been conclusively detected in DNA repair enzymes of Drosophila melanogaster, the fruit fly. Not long ago, another research group even postulated that F0/F420 is co-responsible for DNA repair in plants. Our view of cofactor F420 as a signature molecule for methanogenic species has therefore radically changed: this cofactor is widespread and it is essential for both methane synthesis and for DNA repair."

Professor Thomas Carell is speaker of the "Center for Integrated Protein Science Munich (CiPSM)" center of excellence which supported this research.

Publication: "The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes", Andreas F. Glas, Melanie J. Maul, Max Cryle, Thomas R. M. Barends, Sabine Schneider, Emine Kaya, Ilme Schlichting, and Thomas Carell

Contact:
Professor Thomas Carell
Department of Chemistry and Biochemistry
Ludwig-Maximilians-Universität (LMU) München
Phone: +49 (0) 89 / 2180 - 77755 or - 77750
E-Mail:Thomas.Carell@cup.uni-muenchen.de
Web: www.carellgroup.de

Prof Thomas Carell | EurekAlert!
Further information:
http://www.carellgroup.de
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>