Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rampant helper syndrome

Methane-producing molecule can also repair DNA

The Archaea are single-celled organisms and a domain unto themselves, quite apart from the so called eukaryotes, being bacteria and higher organisms. Many species live under extreme conditions, and carry out unique biochemical processes shared neither with bacteria nor with eukaryotes.

Methanogenic archaeans, for example, can produce methane gas out of carbon dioxide and hydrogen. The underlying chemical reaction, a reduction, involves the cofactor known as F0 or F420 which is the tiny molecule deazaflavin. It has previously been found only in methanogenic bacteria, and has accordingly been considered the signature molecule for those species.

A research group working with Professor Thomas Carell, however, has now shown that this cofactor is also common in eukaryotes, where it performs an entirely different function: deazaflavin is involved in DNA repair processes. (PNAS Early Edition online, 1 July 2009)

Catalysts assist in chemical reactions without undergoing any alteration of their own. In the cells of living organisms, proteins perform this important function. They carry out the metabolism fundamental to all living processes. Proteins are instrumental in cellular respiration, they for instance reduce oxygen to water and oxidize food into carbon dioxide. This releases the energy that makes life possible at all. Proteins cannot perform these functions on their own. They depend on small helper molecules.

Such molecules are stored inside special pockets in the proteins and carry out essential metabolic functions. The living organism itself produces many of these helpers. Others – like vitamins – must be obtained from food. Severe vitamin deficiencies are a harsh reminder of how essential these molecules are.

Methanogenic bacteria have quite an exceptional task to accomplish: They have to produce methane. In terms of chemistry, this is no mean feat. Methane production is currently one of the most hotly pursued goals for the purposes of renewable energy. It is also a serious greenhouse gas.

Enzymatic methane production involves the tiny molecule deazaflavin, known as cofactor F0 or cofactor F420. This cofactor is stored inside special proteins of methanogenic bacteria, and is essential for methane biosynthesis. Cofactor F0/F420 is a small molecule that, until now, has only been found in methanogenic bacteria. It is regarded as the signature molecule for such species.

"We have now shown that this picture is not entirely true," Carell says. "This cofactor is significantly more widespread in the biosphere than previously assumed. Most importantly, it also occurs in higher organisms, the so-called eukaryotes. But in these, it performs a completely different task." As the researchers were able to demonstrate, the cofactor is involved in DNA repair processes. Specifically, repair of UV damage to the DNA molecule.

Plants and many other organisms that are exposed to intense sunlight must cope with an enormous degree of damage to their genes. To repair those mutations, they need the help of complex enzymes. These photolyases in turn require cofactor FAD – aka vitamin B2 – to accomplish this function. It has long been suspected that these crucial enzymes require yet another cofactor to provide the energy that DNA repair requires.

"We have now shown that, in many organisms, this cofactor is F0/F420," Carell reports. "This molecule has been conclusively detected in DNA repair enzymes of Drosophila melanogaster, the fruit fly. Not long ago, another research group even postulated that F0/F420 is co-responsible for DNA repair in plants. Our view of cofactor F420 as a signature molecule for methanogenic species has therefore radically changed: this cofactor is widespread and it is essential for both methane synthesis and for DNA repair."

Professor Thomas Carell is speaker of the "Center for Integrated Protein Science Munich (CiPSM)" center of excellence which supported this research.

Publication: "The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes", Andreas F. Glas, Melanie J. Maul, Max Cryle, Thomas R. M. Barends, Sabine Schneider, Emine Kaya, Ilme Schlichting, and Thomas Carell

Professor Thomas Carell
Department of Chemistry and Biochemistry
Ludwig-Maximilians-Universität (LMU) München
Phone: +49 (0) 89 / 2180 - 77755 or - 77750

Prof Thomas Carell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>