Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Raising the alarm when DNA goes bad

EMBL scientists identify a rapid response team that monitors and quickly responds to DNA damage

Our genome is constantly under attack from things like UV light and toxins, which can damage or even break DNA strands and ultimately lead to cancer and other diseases.

Scientists have known for a long time that when DNA is damaged, a key enzyme sets off a cellular ‘alarm bell’ to alert the cell to start the repair process, but until recently little was known about how the cell detects and responds to this alarm. In a study published today in Nature Structural and Molecular Biology, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have identified a whole family of proteins capable of a direct response to the alarm signal.

Our genome is a huge repository of information guiding the construction and function of all the cells in our bodies. Cells sustain many hits to their DNA every day, which can lead tomutations, so they maintain a fleet of DNA repair machinery that can be rapidly mobilised and sent to damaged sites in an emergency.

Because our DNA is so long and unwieldy, it needs to be packaged up with proteins and organised into a complex structure called chromatin. Scientists have known for 50 years that one component of chromatin, an enzyme known as PARP1, is activated by DNA damage and produces a molecular signal, called PAR, which raises the alarm at the site of the damage. In recent weeks, scientists have for the first time worked out how PAR is rapidly detected by the cell; in their Nature Structural and Molecular Biology paper, the group of Andreas Ladurner and their colleagues at EMBL have identified a whole family of proteins that respond to this signal by binding to it directly.

What these proteins share is a special region called a macrodomain. By using a laser to reproduce DNA damage in the lab, the scientists were able to follow fluorescently-labelled macrodomain proteins in cells and observed that they quickly move to the site of DNA damage. A high-resolution image, obtained by X-ray crystallography, shows how the macrodomain forms a ‘pocket’ fitting the PAR signal exactly.

Among the members of the family the researchers found a protein called histone macroH2A1.1. “This was very surprising. Histones play a major role in assembling chromatin and keeping it together, but they don’t usually have macrodomains,” says Ladurner. “The finding is particularly relevant, because it turns out that cancer cells don’t have macroH2A1.1. The fact that one member of the rapid response team that detects DNA damage is missing could contribute to the disease.”

Because macroH2A1.1 is embedded in chromatin, when it recognises PAR at DNA damage sites, it drags the complex but highly-organised tangle of chromatin with it. As a result, macroH2A1.1 condenses the chromatin environment around the damaged area.

The scientists are now trying to understand why this happens. One plausible explanation could be that by temporarily compacting the DNA, the broken ends of the DNA molecule are kept closer together. This should increase the chances of being able to repair it.

“With these findings we’ve opened up completely new perspectives to a fifty-year-old field of research,” says Ladurner. “We’re very excited of what lies ahead and hope that we’ll soon be much closer in understanding how PARP1 and macrodomains together maintain a healthy genome.”

Anna-Lynn Wegener | EMBL
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>