Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rainforest plant combats multi-resistant bacterial strains

Aggressive infections in hospitals are an increasing health problem worldwide.
The development of bacterial resistance is alarming. Now a young Danish scientist has found a natural substance in a Chilean rainforest plant that effectively supports the effect of traditional treatment with antibiotics.

PhD Jes Gitz Holler from the University of Copenhagen discovered in a research project a compound that targets a particular resistance mechanism in yellow staphylococci. The development of resistance in these specific bacteria is extremely rapid. Bacterial strains that do not respond to treatment have already been found in the USA and Greece.

"I have discovered a natural substance in a Chilean avocado plant that is active in combination treatment with traditional antibiotics. Resistant bacteria have an efflux pump in their bacterial membrane that efficiently pumps out antibiotics as soon as they have gained access. The identified natural substance inhibits the pumping action, so that the bacteria’s defence mechanisms are broken down and the antibiotic treatment allowed to work," explains Jes Gitz Holler.

Jes Gitz Holler gathered specimens of the plant, which comes from the Persea family, in Chile, where the Mapuche people use the leaves of the avocado plant to heal wounds. The results have been published in Journal of Antimicrobial Chemotherapy.

Synthetic chemistry for sustainable production

The so-called MIC value is the lowest possible concentration of an antibiotic that inhibits the bacterial growth. With his compound from the medicine chest of the Mapuche people, Jes Gitz Holler can lower the MIC value by at least eight times:

"The natural compound has great potential and perhaps in the longer term can be developed into an effective drug to combat resistant staphylococci. At this time there are no products on the market that target this same efflux-inhibitor mechanism. We want to improve the active substance using synthetic chemistry in the laboratory. That will also ensure sustainable production of a potential drug while protecting rainforest plants," continues Jes Gitz Holler.
Jes Gitz Holler emphasises that a commercial product will benefit the Mapuche people. At present there is a written agreement between the Faculty of Health and Medical Sciences and the representative of the Mapuche people, Alfonso Guzmán, PhD, who helped procure the plant material.

Bacteria are winning the race

Yellow staphylococcus – Staphylococcus aureus – is the most common cause of infection in wounds from an operation. However, the bacteria can be the cause of many diseases, from abscesses and food poisoning to life-threatening infections such as infective endocarditis and sepsis. The bacteria have been a major problem in hospitals worldwide since the 1940s, and up to now the drug industry has managed to develop new antibiotics in step with the increasingly aggressive behaviour of the bacteria. Unfortunately, that development appears to be turning:

"For all intents and purposes, the drug industry is not pursuing research into new antibiotics. It is simply too expensive relative to possible earnings, and there is more money in drugs to treat chronic diseases such as diabetes. Therefore, the bacteria are winning the race – resistance increases and treatment options are scarce. Research will have to find new paths and natural substances are one of them," emphasises Jes Gitz Holler.


Jes Gitz Holler, PhD
Cell: +45 41 59 37 32

Jes Gitz Holler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>