Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainforest fungus makes diesel

04.11.2008
A unique fungus that makes diesel compounds has been discovered living in trees in the rainforest, according to a paper published in the November issue of Microbiology. The fungus is potentially a totally new source of green energy and scientists are now working to develop its fuel producing potential.

"This is the only organism that has ever been shown to produce such an important combination of fuel substances," said Professor Gary Strobel from Montana State University. "The fungus can even make these diesel compounds from cellulose, which would make it a better source of biofuel than anything we use at the moment."

The fungus, which has been named Gliocladium roseum, produces a number of different molecules made of hydrogen and carbon that are found in diesel. Because of this, the fuel it produces is called "myco-diesel".

"Gliocladium roseum lives inside the Ulmo tree in the Patagonian rainforest. We were trying to discover totally novel fungi in this tree by exposing its tissues to the volatile antibiotics of the fungus Muscodor albus. Quite unexpectedly, G. roseum grew in the presence of these gases when almost all other fungi were killed. It was also making volatile antibiotics. Then when we examined the gas composition of G. roseum, we were totally surprised to learn that it was making a plethora of hydrocarbons and hydrocarbon derivatives. The results were totally unexpected and very exciting and almost every hair on my arms stood on end!"

Many microbes produce hydrocarbons. Fungi that live in wood seem to make a range of potentially explosive compounds. In the rainforest, G. roseum produces lots of long chain hydrocarbons and other biological molecules. When the researchers grew it in the lab, it produced fuel that is even more similar to the diesel we put in our cars.

"When crops are used to make biofuel they have to be processed before they can be turned into useful compounds by microbes," said Professor Strobel. "G. roseum can make myco-diesel directly from cellulose, the main compound found in plants and paper. This means if the fungus was used to make fuel, a step in the production process could be skipped."

Cellulose, lignin and hemicellulose make up the cell walls in plants. Lignin is the glue that holds the cellulose fibres together and makes the plant stand up. These compounds form the part of the plant that most animals cannot digest. They makes up non-foodstuffs like stalks, sawdust and woodchip. Nearly 430 million tonnes of plant waste are produced from just farmland every year; a huge amount to recycle. In current biofuel production, this waste is treated with enzymes called cellulases that turn the cellulose into sugar. Microbes then ferment this sugar into ethanol that can be used as a fuel.

"We were very excited to discover that G. roseum can digest cellulose. Although the fungus makes less myco-diesel when it feeds on cellulose compared to sugars, new developments in fermentation technology and genetic manipulation could help improve the yield," said Professor Strobel. "In fact, the genes of the fungus are just as useful as the fungus itself in the development of new biofuels."

"The discovery also questions our knowledge of the way fossil fuels are made. The accepted theory is that crude oil, which is used to make diesel, is formed from the remains of dead plants and animals that have been exposed to heat and pressure for millions of years," said Professor Strobel. "If fungi like this are producing myco-diesel all over the rainforest, they may have contributed to the formation of fossil fuels."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk/

Further reports about: Biofuel Cellulose Diesel Gliocladium Rainforest compound fossil fuels hydrocarbon myco-diesel

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>