Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Radioprotective Molecules

Blocking iodide transport by inhibiting the sodium iodide symporter

Iodide entrapment in the thyroid gland is essential, and plays a key role in dysfunctions such as thyroid and breast cancers, thyroiditis, Graves–Basedow disease, and Hashimoto's disease.

The accidents at Chernobyl and Fukushima have revealed growing public concerns, as exposure to radioactive iodine increases the risk of cancer and birth defects. There is an urgent need to find radioprotective molecules to prevent and treat body contamination.

Yves Ambroise and colleagues at the Biology and Technology Institute (IBiTecS, France) identified an important class of compounds that efficiently block iodide transport by inhibiting the sodium iodide symporter, and their results are reported in ChemMedChem.

During a hit optimization program, they synthesized and tested more than 100 molecules for their capacity to block iodide entrapment in rat thyroid cells. They identified a new lead compound with nanomolar activity and low toxicity. This discovery opens new perspectives for the development of novel anti-thyroid drugs and radioprotective molecules, as well as pharmacological tools for further investigation of iodide traffic at the cellular level.

About the Author

Yves Ambroise is a research group leader in the Biology and Technology Institute (IBiTecS) at the French Alternative Energies and Atomic Energy Commission (CEA). His main areas of interest are chemical biology and drug discovery using techniques such as high-throughput screening, chemical optimization, and target identification by chemical proteomic methods. His research focuses on the mechanism of iodide uptake in the thyroid gland. He is a member of the Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LERMIT).

Author: Yves Ambroise, Alternative Energies and Atomic Energy Commission, CEA, Gif-sur-Yvette (France),
Title: Synthesis and Evaluation of 3,4-Dihydropyrimidin-2(1H)-ones as Sodium Iodide Symporter Inhibitors

ChemMedChem 2013, 8, No. 1, Permalink to the article:

Yves Ambroise | Wiley-VCH
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>