Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiocarbon dating suggests white sharks can live 70 years and longer

09.01.2014
Adult white sharks, also known as great whites, may live far longer than previously thought, according to a new study that used radiocarbon dating to determine age estimates for white sharks in the Northwest Atlantic Ocean.

Sharks are typically aged by counting alternating opaque and translucent band pairs deposited in sequence in their vertebrae. It is unclear whether these band pairs are deposited annually, making it difficult to accurately estimate age or provide estimates for longevity for many shark species.

The goal of the white shark ageing study, published January 8 in PLOS ONE, was to determine the periodicity of band pair deposition in vertebrae of white sharks from the Northwest Atlantic Ocean using radiocarbon dating. Once validated, the band pair counts can provide a method for determining minimum estimates of longevity in white shark populations.

This first successful radiocarbon age-validation study analyzed vertebrae from four male and four female white sharks (Carcharodon carcharias) caught between 1967 and 2010 in the Northwest Atlantic Ocean.

"Ageing sharks has traditionally relied on counting growth band pairs, like tree rings, in vertebrae with the assumption that band pairs are deposited annually and are related to age," said Lisa Natanson, a fisheries biologist in the Apex Predators Program at NOAA's Northeast Fisheries Science Center (NEFSC) and a co-author of the study. "In many cases, this is true for part or all of a species' life, but at some point growth rates and age are not necessarily in sync. Growth rates slow as sharks' age. Deposition rates in vertebrae can change once the sharks reach sexual maturity, resulting in band pairs that are so thin they are unreadable. Age is therefore frequently underestimated. "

Bomb radiocarbon dating is one of the best techniques for age validation in long-lived species like sharks. The technique uses the discrete radiocarbon pulse in the environment caused by the detonation of nuclear bombs in the 1950s and 1960s as a "time stamp". Radiocarbon levels incorporated into the band pairs are measured and related to a reference chronology to determine the absolute age of a fish and can also be used to confirm or refute annual age in a species.

In this study, researchers from NOAA's Northeast Fisheries Science Center (NEFSC) and the Woods Hole Oceanographic Institution (WHOI) compared radiocarbon values from the shark vertebrae with reference chronologies documenting the marine uptake of carbon 14 produced by the atmospheric bomb testing. Samples were dated at the National Ocean Sciences Accelerator Mass Spectrometry Facility at WHOI. The result was the first radiocarbon age estimates for adult white sharks.

Estimated bomb radiocarbon dating age of the oldest female white shark sampled was 40, and for the oldest male 73. Ages for the three other males were 9, 14, and 44, while the other females sampled had estimated ages of 6, 21, and 32.

Previous studies of white sharks from the Pacific and Indian Oceans suggested that none of the examined specimens were older than 23 years. Also, none of these earlier studies were able to document annual periodicity of the band pairs used to assign age.

Natanson and colleagues suggest that either white sharks are living significantly longer and growing slower in the Northwest Atlantic than either the Pacific or Indian Oceans, or longevity has been underestimated in previous studies.

Knowledge is limited about the age and growth rates of white sharks, apex predators that live in coastal and offshore waters throughout the world. White sharks are considered vulnerable under the International Union for Conservation of Nature (IUCN) Red List of Threatened Species and are protected via international trade agreements and conventions.

Sharks are long-lived animals that grow slowly and do not produce many young. In many parts of the world they are fished commercially, requiring age and growth data for conservation and management efforts. Validation of age in shark species is also critical in understanding their longevity as well as in estimating vital rates such as age at maturity, lifetime fecundity or fertility, growth rates, and differences in growth between males and females.

The shark vertebral samples for this study were provided by Natanson from the Apex Predators Program, which maintains one of the largest collections of North Atlantic white shark vertebrae. The Apex Predators Program, located at the NEFSC's Narragansett Laboratory in Rhode Island, collects basic demographic information about sharks and their life histories by conducting research on their distribution and migration patterns, age and growth, reproductive biology, and feeding ecology.

Natanson has studied sharks for years and has authored or co-authored numerous studies to determine age and growth estimates for tiger, sandbar, mako and other shark species. She has published many reports on general life history aspects of various shark species, routinely collects samples from fishermen and at tournaments, and heads the program's coastal shark survey, which was most recently conducted in 2012. The survey is the oldest continuing survey of large coastal sharks in the U.S. Atlantic Ocean.

With lifespan estimates of 70 years and more, white sharks may be among the longest-lived fishes. Sharks that mature late, have long life spans and produce small litters have the lowest population growth rates and the longest generation times. Increased age at maturity would make white sharks more sensitive to fishing pressure than previously thought, given the longer time needed to rebuild white shark populations.

Study authors, in addition to Lisa Natanson from NOAA, included Li Ling Hamady and Simon Thorrold from WHOI and Greg Skomal from the Massachusetts Division of Marine Fisheries. Hamady is a Ph.D. candidate in the MIT/WHOI Joint Program in Oceanography.

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>