Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiocarbon dating suggests white sharks can live 70 years and longer

09.01.2014
Adult white sharks, also known as great whites, may live far longer than previously thought, according to a new study that used radiocarbon dating to determine age estimates for white sharks in the Northwest Atlantic Ocean.

Sharks are typically aged by counting alternating opaque and translucent band pairs deposited in sequence in their vertebrae. It is unclear whether these band pairs are deposited annually, making it difficult to accurately estimate age or provide estimates for longevity for many shark species.

The goal of the white shark ageing study, published January 8 in PLOS ONE, was to determine the periodicity of band pair deposition in vertebrae of white sharks from the Northwest Atlantic Ocean using radiocarbon dating. Once validated, the band pair counts can provide a method for determining minimum estimates of longevity in white shark populations.

This first successful radiocarbon age-validation study analyzed vertebrae from four male and four female white sharks (Carcharodon carcharias) caught between 1967 and 2010 in the Northwest Atlantic Ocean.

"Ageing sharks has traditionally relied on counting growth band pairs, like tree rings, in vertebrae with the assumption that band pairs are deposited annually and are related to age," said Lisa Natanson, a fisheries biologist in the Apex Predators Program at NOAA's Northeast Fisheries Science Center (NEFSC) and a co-author of the study. "In many cases, this is true for part or all of a species' life, but at some point growth rates and age are not necessarily in sync. Growth rates slow as sharks' age. Deposition rates in vertebrae can change once the sharks reach sexual maturity, resulting in band pairs that are so thin they are unreadable. Age is therefore frequently underestimated. "

Bomb radiocarbon dating is one of the best techniques for age validation in long-lived species like sharks. The technique uses the discrete radiocarbon pulse in the environment caused by the detonation of nuclear bombs in the 1950s and 1960s as a "time stamp". Radiocarbon levels incorporated into the band pairs are measured and related to a reference chronology to determine the absolute age of a fish and can also be used to confirm or refute annual age in a species.

In this study, researchers from NOAA's Northeast Fisheries Science Center (NEFSC) and the Woods Hole Oceanographic Institution (WHOI) compared radiocarbon values from the shark vertebrae with reference chronologies documenting the marine uptake of carbon 14 produced by the atmospheric bomb testing. Samples were dated at the National Ocean Sciences Accelerator Mass Spectrometry Facility at WHOI. The result was the first radiocarbon age estimates for adult white sharks.

Estimated bomb radiocarbon dating age of the oldest female white shark sampled was 40, and for the oldest male 73. Ages for the three other males were 9, 14, and 44, while the other females sampled had estimated ages of 6, 21, and 32.

Previous studies of white sharks from the Pacific and Indian Oceans suggested that none of the examined specimens were older than 23 years. Also, none of these earlier studies were able to document annual periodicity of the band pairs used to assign age.

Natanson and colleagues suggest that either white sharks are living significantly longer and growing slower in the Northwest Atlantic than either the Pacific or Indian Oceans, or longevity has been underestimated in previous studies.

Knowledge is limited about the age and growth rates of white sharks, apex predators that live in coastal and offshore waters throughout the world. White sharks are considered vulnerable under the International Union for Conservation of Nature (IUCN) Red List of Threatened Species and are protected via international trade agreements and conventions.

Sharks are long-lived animals that grow slowly and do not produce many young. In many parts of the world they are fished commercially, requiring age and growth data for conservation and management efforts. Validation of age in shark species is also critical in understanding their longevity as well as in estimating vital rates such as age at maturity, lifetime fecundity or fertility, growth rates, and differences in growth between males and females.

The shark vertebral samples for this study were provided by Natanson from the Apex Predators Program, which maintains one of the largest collections of North Atlantic white shark vertebrae. The Apex Predators Program, located at the NEFSC's Narragansett Laboratory in Rhode Island, collects basic demographic information about sharks and their life histories by conducting research on their distribution and migration patterns, age and growth, reproductive biology, and feeding ecology.

Natanson has studied sharks for years and has authored or co-authored numerous studies to determine age and growth estimates for tiger, sandbar, mako and other shark species. She has published many reports on general life history aspects of various shark species, routinely collects samples from fishermen and at tournaments, and heads the program's coastal shark survey, which was most recently conducted in 2012. The survey is the oldest continuing survey of large coastal sharks in the U.S. Atlantic Ocean.

With lifespan estimates of 70 years and more, white sharks may be among the longest-lived fishes. Sharks that mature late, have long life spans and produce small litters have the lowest population growth rates and the longest generation times. Increased age at maturity would make white sharks more sensitive to fishing pressure than previously thought, given the longer time needed to rebuild white shark populations.

Study authors, in addition to Lisa Natanson from NOAA, included Li Ling Hamady and Simon Thorrold from WHOI and Greg Skomal from the Massachusetts Division of Marine Fisheries. Hamady is a Ph.D. candidate in the MIT/WHOI Joint Program in Oceanography.

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>