Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio frequency ID tags on honey bees reveal hive dynamics

23.07.2014

Scientists attached radio-frequency identification (RFID) tags to hundreds of individual honey bees and tracked them for several weeks. The effort yielded two discoveries: Some foraging bees are much busier than others; and if those busy bees disappear, others will take their place.

The findings are reported in the journal Animal Behaviour.


The radio frequency identification tag allowed researchers to determine that some foraging bees are much more active than others.

Credit: Tom Newman, Robinson Bee Laboratory

Tagging the bees revealed that about 20 percent of the foraging bees in a hive brought home more than half of the nectar and pollen gathered to feed the hive.

"We found that some bees are working very, very hard – as we would have expected," said University of Illinois Institute for Genomic Biology director Gene E. Robinson, who led the research. "But then we found some other bees that were not working as hard as the others."

Citizen scientist Paul Tenczar developed the technique for attaching RFID tags to bees and tracking their flight activity with monitors. He and Neuroscience Program graduate student Claudia Lutz measured the foraging activities of bees in several locations, including some in hives in a controlled foraging environment. (Watch a video about this work.)

Vikyath Rao, a graduate student in the laboratory of U. of I. physics professor Nigel Goldenfeld, analyzed the data using a computer model Rao and Goldenfeld developed.

Previous studies, primarily in ants, have found that some social insects work much harder than others in the same colony, Robinson said.

"The assumption has always been that these 'elite' individuals are in some way intrinsically better, that they were born that way," he said.

While it is well known that genetic differences underlie differences in many types of behavior, the new findings show that "sometimes it is important to give individuals a chance in a different situation to truly find out how different they are from each other," Robinson said.

Removal of the elite bees "was associated with an almost five-fold increase in activity level in previously low-activity foragers," the researchers wrote. The change occurred within 24 hours, Tenczar said. This demonstrates that other individuals within the hive also have the capacity to become elites when necessary, Robinson said.

"It is still possible that there truly are elite bees that have some differential abilities to work harder than others, but it's a larger group than first estimated," Robinson said. "Or it could be that all bees are capable of working at this level and there's some kind of colony-level regulation that has some of them working really, really hard, making many trips while others make fewer trips."

Perhaps the less-busy bees function as a kind of reserve force that can kick into high gear if something happens to the super-foragers, Robinson said.

"Our observation is that the colony bounces back to a situation where some bees are very active and some are less active," he said. "Why is that? We don't know. Do all bees have that capability? We still don't know."

###

The National Science Foundation and the Christopher Family Foundation supported this research.

Editor's notes: To reach Gene Robinson, call 217-265-0309; email generobi@illinois.edu.

The paper, "Automated Monitoring Reveals Extreme Inter-Individual Variation and Plasticity in Honey Bee Foraging Activity Levels," is available online or from the U. of I. News Bureau .

Diana Yates | University of Illinois

Further reports about: RFID Radio-frequency identification activity colony honey bees individuals physics

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>