Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radical Scavengers in Red Smear Cheeses

15.12.2008
Natural carotenoid with unusual structure protects against oxidative damage

Carotenoids not only give carrots and red smear cheeses, such as Munster, Limburger, and Romadur, their characteristic red color, but they also protect organisms from oxidative stress.

A research team headed by Hans-Dieter Martin and Wilhelm Stahl at the University of Düsseldorf has now synthesized and characterized one of these carotenoids in the lab. As they report in the journal Angewandte Chemie, this compound is characterized by outstanding antioxidative and photoprotective properties.

Ranging in color from yellow to purple, carotenoids are pigments found throughout nature that act, among other things, as antioxidants. Antioxidants protect organisms from oxidative stress by capturing reactive oxygen species such as singlet oxygen and free radicals. Antioxidants are also added to foods, drugs, and plastics to prevent the oxidation of sensitive molecules.

Brevibacterium linens, bacteria used for the production of red smear cheeses, contain 3,3’-dihydorxyisorenieratene (DHIR), a carotenoid with a unique structure. Carotenoids are made of a long hydrocarbon chain with alternating single and double bonds. In addition, DHIR has phenolic groups, aromatic six-membered rings of carbon atoms with an OH group, at either end of the chain. Phenolic compounds are also known to be antioxidants; for example, they are present in the tannins in tea and wine.

By using a new synthetic route, the German research team was able to produce enough DHIR for the first comprehensive study of its properties. This revealed it to be an excellent antioxidant that beats other highly effective carotenoid antioxidants by a mile. In addition, its photoprotective properties are outstanding: DHIR protects cells from damage by UV radiation by absorbing UV light as well as capturing the free radicals produced by the radiation. These amazing antioxidative and photoprotective properties seem to stem from synergistic cooperation of the carotenoid and phenolic structural elements of DHIR.

When scavenging free radicals, in some cases both of the phenolic groups are first oxidized to quinoid groups. The resulting quinoid carotenoid, which the researchers were also able to synthesize and characterize, is itself also a very strong antioxidant. Interestingly, it is blue and thus broadens the color palette attainable with carotenoids.

Whether DHIR and its quinoid oxidation product can be used industrially as food and feed colorants, cosmetics, or antioxidants, is currently under investigation. These compounds may also be useful for the prevention of degenerative diseases related to free-radical damage, such as macular degeneration.

Author: Hans-Dieter Martin, Heinrich-Heine-Universität Düsseldorf (Germany), http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/OC1/Martin

Title: 3,3’-Dihydroxyisorenieratene, a Natural Carotenoid with Superior Antioxidant and Photoprotective Properties

Angewandte Chemie International Edition 2009, 48, No. 2, doi: 10.1002/anie.200803668

Hans-Dieter Martin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/OC1/Martin

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>