Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radical Scavengers in Red Smear Cheeses

15.12.2008
Natural carotenoid with unusual structure protects against oxidative damage

Carotenoids not only give carrots and red smear cheeses, such as Munster, Limburger, and Romadur, their characteristic red color, but they also protect organisms from oxidative stress.

A research team headed by Hans-Dieter Martin and Wilhelm Stahl at the University of Düsseldorf has now synthesized and characterized one of these carotenoids in the lab. As they report in the journal Angewandte Chemie, this compound is characterized by outstanding antioxidative and photoprotective properties.

Ranging in color from yellow to purple, carotenoids are pigments found throughout nature that act, among other things, as antioxidants. Antioxidants protect organisms from oxidative stress by capturing reactive oxygen species such as singlet oxygen and free radicals. Antioxidants are also added to foods, drugs, and plastics to prevent the oxidation of sensitive molecules.

Brevibacterium linens, bacteria used for the production of red smear cheeses, contain 3,3’-dihydorxyisorenieratene (DHIR), a carotenoid with a unique structure. Carotenoids are made of a long hydrocarbon chain with alternating single and double bonds. In addition, DHIR has phenolic groups, aromatic six-membered rings of carbon atoms with an OH group, at either end of the chain. Phenolic compounds are also known to be antioxidants; for example, they are present in the tannins in tea and wine.

By using a new synthetic route, the German research team was able to produce enough DHIR for the first comprehensive study of its properties. This revealed it to be an excellent antioxidant that beats other highly effective carotenoid antioxidants by a mile. In addition, its photoprotective properties are outstanding: DHIR protects cells from damage by UV radiation by absorbing UV light as well as capturing the free radicals produced by the radiation. These amazing antioxidative and photoprotective properties seem to stem from synergistic cooperation of the carotenoid and phenolic structural elements of DHIR.

When scavenging free radicals, in some cases both of the phenolic groups are first oxidized to quinoid groups. The resulting quinoid carotenoid, which the researchers were also able to synthesize and characterize, is itself also a very strong antioxidant. Interestingly, it is blue and thus broadens the color palette attainable with carotenoids.

Whether DHIR and its quinoid oxidation product can be used industrially as food and feed colorants, cosmetics, or antioxidants, is currently under investigation. These compounds may also be useful for the prevention of degenerative diseases related to free-radical damage, such as macular degeneration.

Author: Hans-Dieter Martin, Heinrich-Heine-Universität Düsseldorf (Germany), http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/OC1/Martin

Title: 3,3’-Dihydroxyisorenieratene, a Natural Carotenoid with Superior Antioxidant and Photoprotective Properties

Angewandte Chemie International Edition 2009, 48, No. 2, doi: 10.1002/anie.200803668

Hans-Dieter Martin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/OC1/Martin

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>