Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Prehistoric relics" as targets for vaccination against cancer

02.09.2013
Researchers at the Paul-Ehrlich-Institut have succeeded in using a peculiarity of cancer cells for targeted immunological attack: While endogenous retroviruses are inactive in healthy cells, cancer cells produce proteins of these viruses.

With a vaccine directed against endogenous retroviruses, the progression of tumour growth could be significantly inhibited in a mouse model. The prophylactic vaccination could even prevent the development of tumours. The results of this research project were reported in the online edition of PLoS ONE dated 30 August 2013 (11 p.m. CET).


The murine renal carcinoma cell line Renca. On the left: without HERV-K envelope protein expression. On the right: genetically modified Renca cells with HERV-K envelope protein (in red).


Source: PEI - The image is available with 300 dpi (4,7x13,7 cm) - please ask the PEI Press and information office

Human endogenous retroviruses (HERV) entered the human genome millions of years ago and have been passed on from generation to generation. The human genome contains several thousand such endogenous retrovirus genes. As a rule, the genes of HERV are mute, i.e. they do not produce proteins. Researchers of the Paul-Ehrlich-Institut and other groups have already been able to show that an increase in expression of genes of one group of these retroviruses occurs in HIV infected individuals but also in the tumour cells of various types of cancer. The HERV group could be identified as HERV-K/HML-2(hom), or for short, HERV-K. Professor Dr Barbara Schnierle and her co-workers in the Virology Division of the Paul-Ehrlich-Institut now wanted to know whether the specific gene activity of HERV-K could be used therapeutically to fight cancer cells in a targeted manner. To protect healthy cells, it is required to identify structures as targets which are only displayed on cancer cells.

For their investigations, Professor Barbara Schnierle, head of the Section "AIDS, New and Emerging Pathogens", and her co-workers used a murine kidney cell line (Renca). This cell line had been genetically modified in such a way that the cells produced (human) HERV-K envelope proteins to emulate the situation of the HERV-positive human cancer cells as accurately as possible. Mice which received an i.v. administration of these cells developed lung metastases within a short period of time.

For the "vaccination" against these tumours, the researchers used the modified vaccinia virus Ankara (MVA), an attenuated virus which cannot replicate after inoculation. In addition, Professor Schnierle and her co-workers had inserted the gene for the HERV-K envelope protein into the MVA genome. After the inoculation, the gene is read in the cells and the envelope protein is formed. It is presented to the immune system as antigen and an immune response can be induced.

Then the PEI scientists performed investigations to establish whether their "vaccine" could be used both for therapeutic and for prophylactic purposes: For the therapeutic approach, they first injected the genetically modified mouse cancer cells, then waited ten days until lung metastases were formed and then treated part of the mice with the MVA vaccine. The tumours grew considerably more slowly in the vaccinated animals and fewer metastases were observed than in the non-vaccinated animals. However, complete tumour remission was not achieved.

With regard to the prophylactic vaccination, the effect was even more significant: Here, the animals were at first vaccinated twice with the virus (days 0 and 21), and the cancer cells were administered twelve days later. The animals thus vaccinated were protected entirely from tumour development – no metastases could be identified.

"The findings have shown for the first time that the HERV-K envelope protein could be a useful target for the development of a vaccine, and may be able to provide new options for the treatment of various tumours" explained Professor Schnierle.

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen in the federal state of Hessen, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0072756 Publication (Fulltext)

http://www.pei.de/EN/information/journalists-press/press-releases/2013/04-prehistoric-relics-targets-vaccination-against-cancer.html

Press Release on the PEI-Website

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>