Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Prehistoric relics" as targets for vaccination against cancer

02.09.2013
Researchers at the Paul-Ehrlich-Institut have succeeded in using a peculiarity of cancer cells for targeted immunological attack: While endogenous retroviruses are inactive in healthy cells, cancer cells produce proteins of these viruses.

With a vaccine directed against endogenous retroviruses, the progression of tumour growth could be significantly inhibited in a mouse model. The prophylactic vaccination could even prevent the development of tumours. The results of this research project were reported in the online edition of PLoS ONE dated 30 August 2013 (11 p.m. CET).


The murine renal carcinoma cell line Renca. On the left: without HERV-K envelope protein expression. On the right: genetically modified Renca cells with HERV-K envelope protein (in red).


Source: PEI - The image is available with 300 dpi (4,7x13,7 cm) - please ask the PEI Press and information office

Human endogenous retroviruses (HERV) entered the human genome millions of years ago and have been passed on from generation to generation. The human genome contains several thousand such endogenous retrovirus genes. As a rule, the genes of HERV are mute, i.e. they do not produce proteins. Researchers of the Paul-Ehrlich-Institut and other groups have already been able to show that an increase in expression of genes of one group of these retroviruses occurs in HIV infected individuals but also in the tumour cells of various types of cancer. The HERV group could be identified as HERV-K/HML-2(hom), or for short, HERV-K. Professor Dr Barbara Schnierle and her co-workers in the Virology Division of the Paul-Ehrlich-Institut now wanted to know whether the specific gene activity of HERV-K could be used therapeutically to fight cancer cells in a targeted manner. To protect healthy cells, it is required to identify structures as targets which are only displayed on cancer cells.

For their investigations, Professor Barbara Schnierle, head of the Section "AIDS, New and Emerging Pathogens", and her co-workers used a murine kidney cell line (Renca). This cell line had been genetically modified in such a way that the cells produced (human) HERV-K envelope proteins to emulate the situation of the HERV-positive human cancer cells as accurately as possible. Mice which received an i.v. administration of these cells developed lung metastases within a short period of time.

For the "vaccination" against these tumours, the researchers used the modified vaccinia virus Ankara (MVA), an attenuated virus which cannot replicate after inoculation. In addition, Professor Schnierle and her co-workers had inserted the gene for the HERV-K envelope protein into the MVA genome. After the inoculation, the gene is read in the cells and the envelope protein is formed. It is presented to the immune system as antigen and an immune response can be induced.

Then the PEI scientists performed investigations to establish whether their "vaccine" could be used both for therapeutic and for prophylactic purposes: For the therapeutic approach, they first injected the genetically modified mouse cancer cells, then waited ten days until lung metastases were formed and then treated part of the mice with the MVA vaccine. The tumours grew considerably more slowly in the vaccinated animals and fewer metastases were observed than in the non-vaccinated animals. However, complete tumour remission was not achieved.

With regard to the prophylactic vaccination, the effect was even more significant: Here, the animals were at first vaccinated twice with the virus (days 0 and 21), and the cancer cells were administered twelve days later. The animals thus vaccinated were protected entirely from tumour development – no metastases could be identified.

"The findings have shown for the first time that the HERV-K envelope protein could be a useful target for the development of a vaccine, and may be able to provide new options for the treatment of various tumours" explained Professor Schnierle.

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen in the federal state of Hessen, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0072756 Publication (Fulltext)

http://www.pei.de/EN/information/journalists-press/press-releases/2013/04-prehistoric-relics-targets-vaccination-against-cancer.html

Press Release on the PEI-Website

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de

More articles from Life Sciences:

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht New weapon against Diabetes
09.12.2016 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>