"Picturing infertility" – potential to distinguish fertile and infertile human sperm cells

Scientists from Ruhr-Universität Bochum have developed a non-invasive technique that within seconds can distinguish healthy fertile and infertile sperm cells by collecting the spectral chemical fingerprint. The method has the potential for a novel fertility technology and a test scheme which does not only rely on morphological characteristics, but also utilizes chemical signatures. These findings are of fundamental significance and are thus featured as a Highlight in „Chemical Biology“ and in the News section of „Chemistry World” of the Royal Society of Chemistry in May.

Nature has optimized the main function of sperm cells in a similar way to race cars. These cells consist of sub-cellular organelles that contain, for example, mitochondria. Mitochondria are the power stations supplying energy for sperm motion and mobility; one of the crucial factors in fertility. The research team has shown that cellular damage on a molecular level in mitochondria can be present although changes in form and morphology are not visible. This stresses that besides morphology, which is a strict criterion by the WHO Manual for Andrology Laboratories to classify human sperm fertility, it is now possible and necessary to improve the test criteria by incorporating chemical signatures.

The RUB researchers obtained detailed 3D chemical maps which do not require the introduction of additional labels or markers. The Raman micro-spectroscopy used in this study detects sub-cellular components using the spectral fingerprints of molecules based on their characteristic vibrations. Different organelles within human sperm are visualized by their chemically unique Raman spectra. In addition to optical and morphological images, it is now possible to directly image the chemical constituents of individual human sperm cells.

This discovery may contribute to the development of new standards for the classification of healthy fertile and damaged infertile human sperm cells. Since the sperm count of human males around the world has dropped an alarming 50 per cent of what it was more than 50 years ago, there is an urgency to investigate human fertility organelles. The importance of this work was noted by the Royal Society of Chemistry and featured as a Highlight of “Chemical Biology” and as News in „Chemistry World”.

The development of innovative spectroscopic and microscopic methods for high resolution imaging of living cells is one of the research areas at the Chair of Physical Chemistry II (Prof. Dr. Martina Havenith-Newen). The work of Konrad Meister, Diedrich A. Schmidt and Erik Bründermann uses confocal Raman microscopy for detailed 3D imaging and identification of organelles of human sperm cells to reveal the origin of infertility on the molecular level. The funding for the Raman microscope used in this study was supported by the Federal Ministry of Education and Research (BMBF 05KS7PC2).

Title

K. Meister , D. A. Schmidt , E. Bründermann, M. Havenith: Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa, Analyst (2010). DOI: 10.1039/b927012d

Further information

Dr. Erik Bründermann, Prof. Dr. Martina Havenith
Lehrstuhl für Physikalische Chemie II der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24249, erik.bruendermann@rub.de, martina.havenith@rub.de
LINKS
Chair of physical chemistry II (Havenith-Newen): http://www.rub.de/pc2
Link to publication: http://dx.doi.org/10.1039/b927012d
Link to Chemistry World News: http://www.rsc.org/ChemistryWorld/
Link to Highlights in Chemical Biology:
http://www.rsc.org/Publishing/Journals/cb/Volume/2010/06/picturing
_infertility.asp

Media Contact

Dr. Josef König idw

More Information:

http://www.ruhr-uni-bochum.de/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors