Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Picturing infertility" – potential to distinguish fertile and infertile human sperm cells

18.05.2010
RUB researchers draw precise 3D chemical landscapes using non-invasive methods

Scientists from Ruhr-Universität Bochum have developed a non-invasive technique that within seconds can distinguish healthy fertile and infertile sperm cells by collecting the spectral chemical fingerprint. The method has the potential for a novel fertility technology and a test scheme which does not only rely on morphological characteristics, but also utilizes chemical signatures. These findings are of fundamental significance and are thus featured as a Highlight in „Chemical Biology“ and in the News section of „Chemistry World" of the Royal Society of Chemistry in May.

Nature has optimized the main function of sperm cells in a similar way to race cars. These cells consist of sub-cellular organelles that contain, for example, mitochondria. Mitochondria are the power stations supplying energy for sperm motion and mobility; one of the crucial factors in fertility. The research team has shown that cellular damage on a molecular level in mitochondria can be present although changes in form and morphology are not visible. This stresses that besides morphology, which is a strict criterion by the WHO Manual for Andrology Laboratories to classify human sperm fertility, it is now possible and necessary to improve the test criteria by incorporating chemical signatures.

The RUB researchers obtained detailed 3D chemical maps which do not require the introduction of additional labels or markers. The Raman micro-spectroscopy used in this study detects sub-cellular components using the spectral fingerprints of molecules based on their characteristic vibrations. Different organelles within human sperm are visualized by their chemically unique Raman spectra. In addition to optical and morphological images, it is now possible to directly image the chemical constituents of individual human sperm cells.

This discovery may contribute to the development of new standards for the classification of healthy fertile and damaged infertile human sperm cells. Since the sperm count of human males around the world has dropped an alarming 50 per cent of what it was more than 50 years ago, there is an urgency to investigate human fertility organelles. The importance of this work was noted by the Royal Society of Chemistry and featured as a Highlight of "Chemical Biology" and as News in „Chemistry World".

The development of innovative spectroscopic and microscopic methods for high resolution imaging of living cells is one of the research areas at the Chair of Physical Chemistry II (Prof. Dr. Martina Havenith-Newen). The work of Konrad Meister, Diedrich A. Schmidt and Erik Bründermann uses confocal Raman microscopy for detailed 3D imaging and identification of organelles of human sperm cells to reveal the origin of infertility on the molecular level. The funding for the Raman microscope used in this study was supported by the Federal Ministry of Education and Research (BMBF 05KS7PC2).

Title

K. Meister , D. A. Schmidt , E. Bründermann, M. Havenith: Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa, Analyst (2010). DOI: 10.1039/b927012d

Further information

Dr. Erik Bründermann, Prof. Dr. Martina Havenith
Lehrstuhl für Physikalische Chemie II der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24249, erik.bruendermann@rub.de, martina.havenith@rub.de
LINKS
Chair of physical chemistry II (Havenith-Newen): http://www.rub.de/pc2
Link to publication: http://dx.doi.org/10.1039/b927012d
Link to Chemistry World News: http://www.rsc.org/ChemistryWorld/
Link to Highlights in Chemical Biology:
http://www.rsc.org/Publishing/Journals/cb/Volume/2010/06/picturing
_infertility.asp

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>