Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


"Picturing infertility" – potential to distinguish fertile and infertile human sperm cells

RUB researchers draw precise 3D chemical landscapes using non-invasive methods

Scientists from Ruhr-Universität Bochum have developed a non-invasive technique that within seconds can distinguish healthy fertile and infertile sperm cells by collecting the spectral chemical fingerprint. The method has the potential for a novel fertility technology and a test scheme which does not only rely on morphological characteristics, but also utilizes chemical signatures. These findings are of fundamental significance and are thus featured as a Highlight in „Chemical Biology“ and in the News section of „Chemistry World" of the Royal Society of Chemistry in May.

Nature has optimized the main function of sperm cells in a similar way to race cars. These cells consist of sub-cellular organelles that contain, for example, mitochondria. Mitochondria are the power stations supplying energy for sperm motion and mobility; one of the crucial factors in fertility. The research team has shown that cellular damage on a molecular level in mitochondria can be present although changes in form and morphology are not visible. This stresses that besides morphology, which is a strict criterion by the WHO Manual for Andrology Laboratories to classify human sperm fertility, it is now possible and necessary to improve the test criteria by incorporating chemical signatures.

The RUB researchers obtained detailed 3D chemical maps which do not require the introduction of additional labels or markers. The Raman micro-spectroscopy used in this study detects sub-cellular components using the spectral fingerprints of molecules based on their characteristic vibrations. Different organelles within human sperm are visualized by their chemically unique Raman spectra. In addition to optical and morphological images, it is now possible to directly image the chemical constituents of individual human sperm cells.

This discovery may contribute to the development of new standards for the classification of healthy fertile and damaged infertile human sperm cells. Since the sperm count of human males around the world has dropped an alarming 50 per cent of what it was more than 50 years ago, there is an urgency to investigate human fertility organelles. The importance of this work was noted by the Royal Society of Chemistry and featured as a Highlight of "Chemical Biology" and as News in „Chemistry World".

The development of innovative spectroscopic and microscopic methods for high resolution imaging of living cells is one of the research areas at the Chair of Physical Chemistry II (Prof. Dr. Martina Havenith-Newen). The work of Konrad Meister, Diedrich A. Schmidt and Erik Bründermann uses confocal Raman microscopy for detailed 3D imaging and identification of organelles of human sperm cells to reveal the origin of infertility on the molecular level. The funding for the Raman microscope used in this study was supported by the Federal Ministry of Education and Research (BMBF 05KS7PC2).


K. Meister , D. A. Schmidt , E. Bründermann, M. Havenith: Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa, Analyst (2010). DOI: 10.1039/b927012d

Further information

Dr. Erik Bründermann, Prof. Dr. Martina Havenith
Lehrstuhl für Physikalische Chemie II der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24249,,
Chair of physical chemistry II (Havenith-Newen):
Link to publication:
Link to Chemistry World News:
Link to Highlights in Chemical Biology:

Dr. Josef König | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>